Dans cette thèse nous proposons plusieurs contributions à l'étude des groupes quantiques et de leurs représentations. Dans le cadre de l'étude des représentations de dimension finie des algèbres affines quantiques, nous proposons une nouvelle construction algébrique générale des q,t-caractères (t-déformations des q-caractères de Frenkel-Reshetikhin), indépendante de la construction géométrique de Nakajima (cette dernière n'est valable que pour le cas ADE). Cela nous permet d'étendre la quantification de l'anneau de Grothendieck et la définition des analogues des polynômes de Kazhdan-Lusztig aux cas non simplement lacés. Par ailleurs nous établissons une décomposition triangulaire des affinisées quantiques générales (incluant les algèbres affines et toroïdales quantiques) et classifions leurs représentations intégrables de plus haut poids. Nous proposons une nouvelle construction d'un produit de fusion en définissant une déformation du ``nouveau coproduit de Drinfel'd''.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00007188 |
Date | 21 October 2004 |
Creators | Hernandez, David |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds