Spelling suggestions: "subject:"algèbre toroïdale quantique"" "subject:"algèbre toroïdal quantique""
1 |
Autour des représentations des algèbres quantiques : géométrie, dualité de Langlands et catégorification des algèbres clusterHernandez, David 17 July 2009 (has links) (PDF)
Nous présentons des résultats obtenus dans cinq directions autour des représentations des algèbres affines quantiques $\U_q(\hat{\Glie})$. En premier lieu nous prouvons la conjecture de Kirillov-Reshetikhin, c'est-à-dire des formules de caractères pour certaines représentations de dimension finie de $\U_q(\hat{\Glie})$, et nous étendons le résultat à des affinisations minimales; nous étendons le modèle monomial des cristaux aux représentations extrémales et nous y interprétons des automorphismes de Kashiwara. Ensuite, à l'interface avec la géométrie algébrique, nous définissons une notion de groupes de lacets analytiques avec une factorisation de Riemann-Hilbert qui permet de réaliser géométriquement le centre de $\U_q(\hat{\Glie})$ aux racines de $1$. Comme application, nous paramétrisons des classes d'équivalences de représentations de $\U_q(\hat{\Glie})$ par des $G$-fibrés sur une courbe elliptique. On résoud le problème de petitesse géométrique posé par Nakajima pour des résolutions de variétés carquois. Troisièmement, nous établissons une nouvelle dualité de Langlands pour des représentations de $\Glie$ et de $\U_q(\hat{\Glie})$ et nous définissons des groupes quantiques d'interpolation pour l'interpréter. Quatrièmement, nous construisons une catégorie tensorielle pour les algèbres affinisées quantiques et des représentations de dimension finie d'algèbres toroïdales quantiques (et de Cherednik); nous proposons un analogue en théorie de Lie des algèbres de réflexion symplectiques. Enfin, nous obtenons des catégorifications monoïdales d'algèbres cluster en terme d'une catégorie $\mathcal{C}_1$ de représentations de $\U_q(\hat{\Glie})$. Pour ce faire, nous établissons notamment la factorisation en modules premiers de modules simples de $\mathcal{C}_1$.
|
2 |
Représentations des algèbres affinisées quantiques : q,t-caractères et produit de fusionHernandez, David 21 October 2004 (has links) (PDF)
Dans cette thèse nous proposons plusieurs contributions à l'étude des groupes quantiques et de leurs représentations. Dans le cadre de l'étude des représentations de dimension finie des algèbres affines quantiques, nous proposons une nouvelle construction algébrique générale des q,t-caractères (t-déformations des q-caractères de Frenkel-Reshetikhin), indépendante de la construction géométrique de Nakajima (cette dernière n'est valable que pour le cas ADE). Cela nous permet d'étendre la quantification de l'anneau de Grothendieck et la définition des analogues des polynômes de Kazhdan-Lusztig aux cas non simplement lacés. Par ailleurs nous établissons une décomposition triangulaire des affinisées quantiques générales (incluant les algèbres affines et toroïdales quantiques) et classifions leurs représentations intégrables de plus haut poids. Nous proposons une nouvelle construction d'un produit de fusion en définissant une déformation du ``nouveau coproduit de Drinfel'd''.
|
Page generated in 0.1139 seconds