• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bases canoniques et graduations associées aux algèbres de Hecke doublement affines rationnelles

Shan, Peng 06 December 2010 (has links) (PDF)
Cette thèse se compose de trois chapitres. Dans le chapitre I, nous définissons les foncteurs de i-restriction et i-induction sur la catégorie O des algèbres de Hecke doublement affine rationnelles cyclotomiques. En utilisant ces foncteurs, nous construisons un cristal sur l'ensemble des classes d'isomorphisme des modules simples, qui est isomorphe au cristal de l'espace de Fock. Le chapitre II est un travail en collaboration avec Michela Varagnolo et Eric Vasserot. Nous démontrons une conjecture de Kashiwara et Miemietz sur bases canoniques et règles de branchement pour les algèbres de Hecke affines de type D. Dans le chapitre III, nous démontrons une conjecture de Leclerc et Thibon sur les multiplicités graduées associées à la filtration de Jantzen de modules de Weyl sur algèbres de v-Schur.
2

Réécriture de dimension supérieure et cohérence appliquées à la catégorification et la théorie des représentations / Higher-dimensional linear rewriting and coherence in categorification and representation theory

Alleaume, Clément 25 June 2018 (has links)
Dans cette thèse, nous présentons des applications de la réécriture à l'étude de problèmes issus de la catégorification et de la théorie des représentations. En particulier, nous appliquons les méthodes de réécriture aux problèmes de cohérence dans les catégories linéaires et au calcul de décatégorifications. Des méthodes de réécriture ont été développées pour obtenir des résultats de cohérence dans les monoïdes et les catégories monoïdales présentés par des systèmes de réécriture nommés polygraphes. Ces constructions basées sur des résultats de Squier permettent en particulier de calculer des présentations cohérentes de catégories de dimension supérieure à partir des diagrammes de confluence de polygraphes convergents. Dans ce mémoire, nous étendons ces constructions pour obtenir des résultats de cohérence dans les catégories linéaires de dimension supérieure. Nous introduisons les polygraphes linéaires afin de présenter les catégories linéaires de dimension supérieure par des systèmes de réécriture. Nous étudions ensuite les propriétés de réécriture de ces systèmes. Nous donnons une description polygraphique du calcul de décatégorification de Grothendieck. Nous généralisons également la procédure de Knuth-Bendix appliquée aux polygraphes de dimension supérieure. Cette procédure permet de compléter des présentations de catégories de dimension supérieure n'admettant pas nécessairement d'ordre de terminaison induit par une orientation des règles. De plus, nous étudions des problèmes de cohérence dans les catégories de dimension supérieure. Etant donné un polygraphe confluent et quasi-terminant, nous introduisons une notion de complétion de Squier de ce polygraphe composée de diagrammes de décroissance. Nous prouvons que cette complétion rend asphérique la catégorie de dimension supérieure libre sur ce polygraphe. Ce résultat généralise un résultat de Squier au cas des présentations quasi-terminantes. Nous présentons enfin les applications des propriétés des polygraphes linéaire à l'étude de la catégorie AOB définie par Brundan, Comes, Nash et Reynolds. Nous retrouvons par des méthodes de réécriture les bases des espaces de morphismes de AOB exhibées par Brundan, Comes, Nash and Reynolds / In this thesis, we study applications of rewriting theory to categorification problems and representation theory. We apply rewriting methods to coherence problems in linear categories and computation of decategorifications.Proofs of coherence results for monoids and monoidal categories by rewriting methods are well known. In particular, several constructions based on Squier's results lead to the computation of coherent presentations of higher-dimensional categories from the confluence diagrams of convergent rewriting systems. In this memoir, we extend those constructions to coherence results for higher-dimensional linear categories.We introduce linear polygraphs to present higher-dimensional linear categories by rewriting systems. We then develop the main rewriting properties of these systems. We focus next on the applications of those properties to the study of categorification problems such that the computation of Grothendieck decategorification by rewriting methods. Another result we obtain on higher-dimensional polygraphs is a generalization of the Knuth-Bendix procedure to higher-dimensional polygraphs. This new procedure allows us to complete presentations of higher-dimensional categories which do not necessarily admit a termination order induced by any orientation of rules.We also study general coherence problems. Given a confluent and quasi-terminating polygraph, we define a globular extension of this polygraph called decreasing Squier's completion. We prove that this extension makes aspherical the free higher-dimensional category over the given polygraph. This result generalizes a result of Squier to the case of non terminating presentations.Finally, we focus on the applications of those properties to higher-dimensional linear categories such that the category AOB defined by Brundan, Comes, Nash and Reynolds. We find by rewriting methods the bases of the morphisms spaces of AOB that Brundan, Comes, Nash and Reynolds exhibited
3

Sur l'homologie de Khovanov-Rozansky des graphes et des entrelacs.

Wagner, Emmanuel 10 December 2007 (has links) (PDF)
Cette thèse est consacrée à la catégorification d'invariants polynomiaux d'entrelacs et de graphes. Pour tout entier strictement positif n, Khovanov et Rozansky ont introduit en 2004 une homologie bigraduée d'entrelacs, ainsi qu'une homologie de graphes planaires. Etant donné n, leur homologie d'entrelacs catégorifie la n-ième spécialisation du polynôme d'entrelacs HOMFLYPT et leur homologie de graphes planaires catégorifie un polynôme de graphes associé. <br /><br />Dans cette thèse, on étudie ces homologies et on généralise leur construction en introduisant une graduation supplémentaire. Tout d'abord, on généralise une formule de Jaeger pour les polynômes d'entrelacs aux polynômes de graphes planaires, ainsi qu'à l'homologie de graphes planaires; on étend ensuite l'homologie d'entrelacs de Khovanov-Rozansky aux graphes plongés. Puis on construit une homologie trigraduée d'entrelacs. Cette homologie recouvre l'homologie bigraduée d'entrelacs de Khovanov et Rozansky. Enfin, on donne des exemples, des applications et des généralisations de l'homologie trigraduée d'entrelacs. On développe des outils d'algèbre homologique qui permettent de calculer explicitement l'homologie trigraduée d'entrelacs pour des exemples et on considère des déformations de l'homologie trigraduée d'entrelacs.
4

Groupes de tresses et catégorification

Thiel, Anne-Laure 17 June 2010 (has links) (PDF)
La thèse porte sur la catégorification de généralisations de groupes de tresses. Nous étendons une représentation des groupes de tresses par complexes de bimodules de Soergel due à Rouquier. Nous généralisons d'abord ce résultat en type A aux monoïdes de tresses singulières, puis aux groupes de tresses virtuelles. Enfin nous définissons, puis catégorifions des groupes de tresses virtuelles de type B en nous fondant sur une description des groupes de tresses de type B donnée par tom Dieck utilisant des tresses symétriques.
5

Cyclic operads : syntactic, algebraic and categorified aspects / Opérades cycliques : aspects syntaxiques, algébriques et catégorifiés

Obradović, Jovana 01 September 2017 (has links)
Dans cette thèse, nous examinons différents cadres pour la théorie générale des opérades cycliques de Getzler et Kapranov. Comme le suggère le titre, nous établissons des fondements théoriques de natures syntaxiques, algébriques et catégorifiées pour la notion d’opérade cyclique. Dans le traitement syntaxique, nous proposons un langage formel à la manière du lambda-calcul, appelé mu-syntaxe, en tant que représentation légère de la structure <<entries-only >> d’opérades cycliques. Contrairement à la caractérisation originale des opérades cycliques, appelée la caractérisation <<exchangeable-output>> , selon laquelle les opérations d’une opérade cyclique ont des entrées et une sortie qui peut être << échangée >> avec une entrée, les opérades cycliques <<entries-only >> sont présentées comme des généralisations d’opérades pour lesquelles une opération n’a plus des entrées et une sortie, mais seulement des entrées (c’est-à-dire pour lesquelles la sortie est <<au même niveau>> que les entrées). Grâce aux méthodes de réécriture derrière le formalisme, nous donnons une preuve pas-à-pas complète de l’équivalence entre les définitions biaisées et non biaisées des opérades cycliques.Guidés par le principe du microcosme de Baez et Dolan et par les définitions algébriques des opérades de Kelly et Fiore, dans l’approche algébrique, nous définissons les opérades cycliques à l’intérieur de la catégorie des espèces de structures de Joyal. De cette façon, la caractérisation originale << exchangeable-output>> de Getzler et Kapranov, et la caractérisation alternative <<entries-only>> des opérades cycliques de Markl, sont toutes les deux incarnées comme monoïdes dans une catégorie monoïdale des espèces de structures. En s’appuyant sur un résultat de Lamarche sur la descente pour les espèces, nous utilisons ces définitions monoïdales pour prouver l’équivalence entre les points de vue <<exchangeable-output >> et << entries-only>> pour les opérades cycliques.Enfin, nous établissons une notion d’opérade cyclique catégorifiée pour les opérades cycliques avec symétries, définies dans la catégorie des ensembles en termes de générateurs et relations. Les catégorifications que nous introduisons sont obtenues en remplaçant des ensembles d’opérations de la même arité par des catégories, en relâchant certains axiomes de la structure, comme l’associativité et la commutativité, en isomorphismes, tout en laissant l’équivariance stricte, et en formulant des conditions de cohérence pour ces isomorphismes. Le théorème de cohérence que nous prouvons a la forme << tous les diagrammes d’isomorphismes canoniques commutent >>. Pour les opérades cycliques <<entries-only>> , notre preuve a un caractère syntaxique et s’appuie sur la cohérence des opérades non symétriques catégorifiées, établie par Došen et Petrić. Nous prouvons la cohérence des opérades cycliques <<exchangeable-output >>, en relevant au cadre catégorifié l’équivalence entre les définitions <<entries-only>> et <<exchangeable-output>> , mise en place précédemment dans l’approche algébrique. / In this thesis, we examine different frameworks for the general theory of cyclic operads of Getzler and Kapranov. As suggested by the title, we set up theoretical grounds of syntactic, algebraic and categorified nature for the notion of a cyclic operad.In the syntactic treatment, we propose a lambda-calculus-style formal language, called mu-syntax, as a lightweight representation of the entries-only cyclic operad structure. As opposed to the original exchangeable-output characterisation of cyclic operads, according to which the operations of a cyclic operad have inputs and an output that can be “exchanged” with one of the inputs, the entries-only cyclic operads have only entries (i.e. the output is put on the same level as the inputs). By employing the rewriting methods behind the formalism, we give a complete step-by-step proof of the equivalence between the unbiased and biased definitions of cyclic operads.Guided by the microcosm principle of Baez and Dolan and by the algebraic definitions of operads of Kelly and Fiore, in the algebraic approach we define cyclic operads internally to the category of Joyal’s species of structures. In this way, both the original exchangeable-output characterisation of Getzler and Kapranov, and the alternative entries-only characterisation of cyclic operads of Markl are epitomised as “monoid-like” objects in “monoidal-like” categories of species. Relying on a result of Lamarche on descent for species, we use these “monoid-like” definitions to prove the equivalence between the exchangeable-output and entries-only points of view on cyclic operads.Finally, we establish a notion of categorified cyclic operad for set-based cyclic operads with symmetries, defined in terms of generators and relations. The categorifications we introduce are obtained by replacing sets of operations of the same arity with categories, by relaxing certain defining axioms, like associativity and commutativity, to isomorphisms, while leaving the equivariance strict, and by formulating coherence conditions for these isomorphisms. The coherence theorem that we prove has the form “all diagrams of canonical isomorphisms commute”.For entries-only categorified cyclic operads, our proof is of syntactic nature and relies on the coherence of categorified operads established by Došen and Petrić. We prove the coherence of exchangeable-output categorified cyclic operads by “lifting to the categorified setting” theequivalence between entries-only and exchangeable-output cyclic operads, set up previously in the algebraic approach.
6

Autour des représentations des algèbres quantiques : géométrie, dualité de Langlands et catégorification des algèbres cluster

Hernandez, David 17 July 2009 (has links) (PDF)
Nous présentons des résultats obtenus dans cinq directions autour des représentations des algèbres affines quantiques $\U_q(\hat{\Glie})$. En premier lieu nous prouvons la conjecture de Kirillov-Reshetikhin, c'est-à-dire des formules de caractères pour certaines représentations de dimension finie de $\U_q(\hat{\Glie})$, et nous étendons le résultat à des affinisations minimales; nous étendons le modèle monomial des cristaux aux représentations extrémales et nous y interprétons des automorphismes de Kashiwara. Ensuite, à l'interface avec la géométrie algébrique, nous définissons une notion de groupes de lacets analytiques avec une factorisation de Riemann-Hilbert qui permet de réaliser géométriquement le centre de $\U_q(\hat{\Glie})$ aux racines de $1$. Comme application, nous paramétrisons des classes d'équivalences de représentations de $\U_q(\hat{\Glie})$ par des $G$-fibrés sur une courbe elliptique. On résoud le problème de petitesse géométrique posé par Nakajima pour des résolutions de variétés carquois. Troisièmement, nous établissons une nouvelle dualité de Langlands pour des représentations de $\Glie$ et de $\U_q(\hat{\Glie})$ et nous définissons des groupes quantiques d'interpolation pour l'interpréter. Quatrièmement, nous construisons une catégorie tensorielle pour les algèbres affinisées quantiques et des représentations de dimension finie d'algèbres toroïdales quantiques (et de Cherednik); nous proposons un analogue en théorie de Lie des algèbres de réflexion symplectiques. Enfin, nous obtenons des catégorifications monoïdales d'algèbres cluster en terme d'une catégorie $\mathcal{C}_1$ de représentations de $\U_q(\hat{\Glie})$. Pour ce faire, nous établissons notamment la factorisation en modules premiers de modules simples de $\mathcal{C}_1$.

Page generated in 0.1285 seconds