Cette thèse s'intéresse à deux modèles de régression semi-paramétrique permettant de contourner le problème classique du "fléau de la dimension" inhérent aux approches non-paramétriques usuelles. La première partie du travail concerne l'étude d'un modèle de régression dit partiellement linéaire ; le but est d'identifier les régresseurs qui composent la partie non-linéaire de la fonction de régression ainsi que d'estimer tous les paramètres du modèle. Pour ce faire nous définissons des quantités caractéristiques du modèle qui mesurent la linéarité des régresseurs puis nous développons un test du nombre de composantes non-linéaires basé sur cette mesure. La seconde partie porte sur l'étude d'un modèle dit à direction révélatrice unique et consiste à estimer, via des propriétés géométriques, l'axe du modèle et d'en déduire un test convergent et puissant sous une suite d'alternatives locales.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008730 |
Date | 24 October 2003 |
Creators | Roget-Vial, Céline |
Publisher | Université Rennes 1 |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds