Spelling suggestions: "subject:"selection dde modèle"" "subject:"selection dee modèle""
1 |
deux contributions à l'étude semi-paramétrique d'un modèle de régressionRoget-Vial, Céline 24 October 2003 (has links) (PDF)
Cette thèse s'intéresse à deux modèles de régression semi-paramétrique permettant de contourner le problème classique du "fléau de la dimension" inhérent aux approches non-paramétriques usuelles. La première partie du travail concerne l'étude d'un modèle de régression dit partiellement linéaire ; le but est d'identifier les régresseurs qui composent la partie non-linéaire de la fonction de régression ainsi que d'estimer tous les paramètres du modèle. Pour ce faire nous définissons des quantités caractéristiques du modèle qui mesurent la linéarité des régresseurs puis nous développons un test du nombre de composantes non-linéaires basé sur cette mesure. La seconde partie porte sur l'étude d'un modèle dit à direction révélatrice unique et consiste à estimer, via des propriétés géométriques, l'axe du modèle et d'en déduire un test convergent et puissant sous une suite d'alternatives locales.
|
2 |
Méthodes de Bootstrap pour les modèles à facteursDjogbenou, Antoine A. 07 1900 (has links)
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram-
ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002)
sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables
macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di-
verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco-
nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents
extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen-
taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron.
Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées
pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le
futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée
de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves
et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild
bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux
de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches
comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation
sérielle dans les erreurs de régression.
Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles
de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo-
sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa
moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble
de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme
latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres-
sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction
d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous
permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des
hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à
des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il
prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre
une étude récente de Gonçalves et Perron (2014).
Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour
les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement
que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation,
la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour
l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la
validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par-
cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles.
L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et
l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un
large panel de données macroéconomiques et financières des États Unis, les facteurs fortement
correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif
pour les excès de rendement. / This thesis develops bootstrap methods for factor models which are now widely used for generating forecasts since the seminal paper of Stock and Watson (2002) on diffusion indices. These models allow the inclusion of a large set of macroeconomic and financial variables as predictors, useful to span various information related to economic agents. My thesis develops econometric tools that improves inference in factor-augmented regression models driven by few unobservable factors estimated from a large panel of observed predictors. It is subdivided into three complementary chapters. The two first chapters are joint papers with Sílvia Gonçalves and Benoit Perron.
In the first chapter, we study how bootstrap methods can be used to make inference in h-step forecasting models which generally involve serially correlated errors. It thus considers bootstrap inference in a factor-augmented regression context where the errors could potentially be serially correlated. This generalizes results in Gonçalves and Perron (2013) and makes the bootstrap applicable to forecasting contexts where the forecast horizon is greater than one. We propose and justify two residual-based approaches, a block wild bootstrap (BWB) and a dependent wild bootstrap (DWB). Our simulations document improvement in coverage rates of confidence intervals for the coefficients when using BWB or DWB relative to both asymptotic theory and the wild bootstrap when serial correlation is present in the regression errors.
The second chapter provides bootstrap methods for prediction intervals which allow relaxing the normality distribution assumption on innovations. We propose bootstrap prediction intervals for an observation h periods into the future and its conditional mean. We assume that these forecasts are made using a set of factors extracted from a large panel of variables. Because we treat these factors as latent, our forecasts depend both on estimated factors and
estimated regression coefficients. Under regularity conditions, Bai and Ng (2006) proposed the construction of asymptotic intervals under Gaussianity of the innovations. The bootstrap allows us to relax this assumption and to construct valid prediction intervals under more general conditions. Moreover, even under Gaussianity, the bootstrap leads to more accurate intervals in cases where the cross-sectional dimension is relatively small as it reduces the bias of the ordinary least squares estimator as shown in a recent paper by Gonçalves and Perron (2014).
The third chapter proposes two consistent model selection procedures for factor-augmented regressions in finite samples.We first demonstrate that the usual cross-validation is inconsistent, but that a generalization, leave-d-out cross-validation, selects the smallest basis of estimated factors for the space spanned by the true factors. The second proposed criterion is a generalization of the bootstrap approximation of the squared error of prediction of Shao (1996) to
factor-augmented regressions which we also show is consistent. Simulation evidence documents improvements in the probability of selecting the smallest set of estimated factors than the usually available methods. An illustrative empirical application that analyzes the relationship between expected stock returns and macroeconomic and financial factors extracted from a large panel of U.S. macroeconomic and financial data is conducted. Our new procedures select factors
that correlate heavily with interest rate spreads and with the Fama-French factors. These factors have strong predictive power for excess returns.
|
3 |
Choix de portefeuille de grande taille et mesures de risque pour preneurs de décision pessimistesNoumon, Codjo Nérée Gildas Maxime 08 1900 (has links)
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées.
Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère.
Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays.
Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011. / This thesis consists of three chapters on the topics of portfolio choice in a high-dimensional context, and risk measurement. The first chapter addresses the estimation error issue that arises when constructing large portfolios in the mean-variance framework. The second chapter investigates the relevance of currency risk for optimal domestic portfolios, evaluates their ability of to diversify away currency risk, and study the links between portfolio weights stability and currency risk. Finally, under the assumption that decision makers are pessimistic, the third chapter derives the risk premium, propose a measure of the degree of pessimism, and provide a statistical framework for their estimation.
The first chapter improves the performance of the optimal portfolio weig-hts obtained under the mean-variance framework of Markowitz (1952). Indeed, these weights give unsatisfactory results, when the mean and variance are replaced by their sample counterparts (plug-in rules). This problem is amplified when the number of assets is large and the sample covariance is singular or nearly singular. The chapter investigates four regularization techniques to stabilizing the inverse of the covariance matrix: the ridge, spectral cut-off, Landweber-Fridman, and LARS Lasso. These four methods involve a tuning parameter that needs to be selected. The main contribution is to derive a data-based method for selecting the tuning parameter in an optimal way, i.e. in order to minimize the expected loss in utility of a mean-variance investor. The cross-validation type criterion derived is found to take a similar form for the four regularization methods. The resulting regularized rules are compared to the sample-based mean-variance portfolio and the naive 1/N strategy in terms of in-sample and out-of-sample Sharpe ratio and expected loss in utility. The main finding is that regularization to covariance matrix significantly improves the performance of the mean-variance problem and outperforms the naive portfolio, especially in ill-posed cases, as suggested by our simulations and empirical studies.
In the second chapter, we investigate the extent to which optimal and stable portfolios of domestic assets can reduce or eliminate currency risk. This is done using monthly returns on 48 U.S. industries, from 1976 to 2008. To tackle the instabilities inherent to large portfolios, we use the spectral cut-off regularization described in Chapter 1. This gives rise to a family of stable global minimum portfolios that allows investors to select different percentages of principal components for portfolio construction. Our empirical tests are based on a conditional International Asset Pricing Model (IAPM), augmented with the size and book-to-market factors of Fama and French (1993). Using two trade-weighted currency indices of industrialized countries currencies and emerging markets currencies, we find that currency risk is priced and time-varying for global minimum portfolios. These strategies also lead to a significant reduction in the exposure to currency risk, while keeping the average premium contribution to total premium approximately the same. The global minimum weights considered are an alternative to market capitalization weights used in the U.S. market index. Therefore, our findings complement the well established results that currency risk is significantly priced and economically meaningful at the industry and country level in most countries.
Finally, the third chapter derives a measure of the risk premium for rank-dependent preferences and proposes a measure of the degree of pessimism, given a distortion function. The introduced measures generalize the common risk measures derived in the expected utility theory framework, which is frequently violated in both experimental and real-life situations. These measures are derived in the neighborhood of a given random loss variable, using the notion of local utility function. A particular interest is devoted to the CVaR, which is now widely used for asset allocation and has been advocated to complement the Value-at-risk (VaR) proposed since 1996 by the Basel Committee on Banking Supervision. We provide the statistical framework needed to conduct inference on the derived measures. Finally, the proposed estimators
|
4 |
Choix de portefeuille de grande taille et mesures de risque pour preneurs de décision pessimistesNoumon, Codjo Nérée Gildas Maxime 08 1900 (has links)
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées.
Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère.
Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays.
Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011. / This thesis consists of three chapters on the topics of portfolio choice in a high-dimensional context, and risk measurement. The first chapter addresses the estimation error issue that arises when constructing large portfolios in the mean-variance framework. The second chapter investigates the relevance of currency risk for optimal domestic portfolios, evaluates their ability of to diversify away currency risk, and study the links between portfolio weights stability and currency risk. Finally, under the assumption that decision makers are pessimistic, the third chapter derives the risk premium, propose a measure of the degree of pessimism, and provide a statistical framework for their estimation.
The first chapter improves the performance of the optimal portfolio weig-hts obtained under the mean-variance framework of Markowitz (1952). Indeed, these weights give unsatisfactory results, when the mean and variance are replaced by their sample counterparts (plug-in rules). This problem is amplified when the number of assets is large and the sample covariance is singular or nearly singular. The chapter investigates four regularization techniques to stabilizing the inverse of the covariance matrix: the ridge, spectral cut-off, Landweber-Fridman, and LARS Lasso. These four methods involve a tuning parameter that needs to be selected. The main contribution is to derive a data-based method for selecting the tuning parameter in an optimal way, i.e. in order to minimize the expected loss in utility of a mean-variance investor. The cross-validation type criterion derived is found to take a similar form for the four regularization methods. The resulting regularized rules are compared to the sample-based mean-variance portfolio and the naive 1/N strategy in terms of in-sample and out-of-sample Sharpe ratio and expected loss in utility. The main finding is that regularization to covariance matrix significantly improves the performance of the mean-variance problem and outperforms the naive portfolio, especially in ill-posed cases, as suggested by our simulations and empirical studies.
In the second chapter, we investigate the extent to which optimal and stable portfolios of domestic assets can reduce or eliminate currency risk. This is done using monthly returns on 48 U.S. industries, from 1976 to 2008. To tackle the instabilities inherent to large portfolios, we use the spectral cut-off regularization described in Chapter 1. This gives rise to a family of stable global minimum portfolios that allows investors to select different percentages of principal components for portfolio construction. Our empirical tests are based on a conditional International Asset Pricing Model (IAPM), augmented with the size and book-to-market factors of Fama and French (1993). Using two trade-weighted currency indices of industrialized countries currencies and emerging markets currencies, we find that currency risk is priced and time-varying for global minimum portfolios. These strategies also lead to a significant reduction in the exposure to currency risk, while keeping the average premium contribution to total premium approximately the same. The global minimum weights considered are an alternative to market capitalization weights used in the U.S. market index. Therefore, our findings complement the well established results that currency risk is significantly priced and economically meaningful at the industry and country level in most countries.
Finally, the third chapter derives a measure of the risk premium for rank-dependent preferences and proposes a measure of the degree of pessimism, given a distortion function. The introduced measures generalize the common risk measures derived in the expected utility theory framework, which is frequently violated in both experimental and real-life situations. These measures are derived in the neighborhood of a given random loss variable, using the notion of local utility function. A particular interest is devoted to the CVaR, which is now widely used for asset allocation and has been advocated to complement the Value-at-risk (VaR) proposed since 1996 by the Basel Committee on Banking Supervision. We provide the statistical framework needed to conduct inference on the derived measures. Finally, the proposed estimators
|
Page generated in 0.0788 seconds