• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quelques applications du contrôle stochastique aux options réelles et au risque de liquidité.

Ly Vath, Vathana 04 December 2006 (has links) (PDF)
Nous étudions quelques applications du contrôle stochastique aux options réelles et au risque de liquidité. Plus précisément, dans la première partie, nous nous intéressons à un problème de sélection du portefeuille optimal sous un modèle de risque de liquidité, puis dans la deuxième partie, à deux options réelles: un problème de changement de régime et un problème couplé de contrôle singulier et de changement de régime pour une politique de dividende avec investissement réversible, et enfin, dans la dernière partie, à l'existence d'un équilibre dans un marché compétitif sous asymétrie d'information. Dans la résolution de ces problèmes, surtout dans les deux premières parties, des techniques de contrôle stochastique seront utilisées. L'approche typique consiste à exprimer le principe de la programmation dynamique lié à chaque problématique afin d'obtenir une caractérisation par EDP des fonctions de valeur. Par cette approche, nous montrons, dans le problème de risque de liquidité et les deux options réelles, que les fonctions de valeur correspondantes sont l'unique solution du système d'inégalités variationnelles d'HJB associé. Dans chaque problème des deux premières parties, on peut obtenir les solutions, en particulier les contrôles optimaux, soit d'une manière explicite, soit par une méthode itérative.
2

Investissement socialement responsable et sélection de portefeuille / Socially Responsible Investment and Portfolio Selection

Drut, Bastien 05 October 2011 (has links)
Cette thèse s’attèle à déterminer les conséquences théoriques et empiriques de la considération d’indicateurs socialement responsables dans la sélection de portefeuille traditionnelle. Le premier chapitre étudie la significativité de la perte d’efficience moyenne-variance d’un portefeuille d’obligations souveraines lorsque l’on introduit une contrainte sur la notation socialement responsable moyenne des Etats. En utilisant un échantillon d’obligations d’Etats développés sur la période 1995-2008, nous montrons qu’il est possible d’augmenter sensiblement la notation socialement responsable moyenne sans perdre significativement en termes de diversification. Le second chapitre propose une analyse théorique de l’effet sur la frontière efficiente d’une contrainte sur la notation socialement responsable du portefeuille. Nous mettons en évidence les différents cas de figure pouvant se produire en fonction de la corrélation entre les rendements attendus et les notations socialement responsables et de l’aversion au risque de l’investisseur. Enfin, puisque la question de l’efficience des portefeuilles investis en fonction de critères socialement responsables fait débat dans la littérature financière, un dernier chapitre propose un nouveau test d’efficience moyenne-variance dans le cas réaliste où aucun actif sans risque n’est disponible. / This thesis aims at determining the theoretical and empirical consequences of the consideration of socially responsible indicators in the traditional portfolio selection. The first chapter studies the significance of the mean-variance efficiency loss of a sovereign bond portfolio when introducing a constraint on the average socially responsible ratings of the governments. By using a sample of developed sovereign bonds on the period 1995-2008, we show that it is possible to increase sensibly the average socially responsible rating without significantly losing in terms of diversification. The second chapter proposes a theoretical analysis of the impact on the efficient frontier of a constraint on the socially responsible ratings of the portfolio. We highlight that different cases may arise depending on the correlation between the expected returns and the socially responsible ratings and on the investor’s risk aversion. Lastly, as the issue of the efficiency of socially responsible portfolios is a central point in the financial literature, the last chapter proposes a new mean-variance efficiency test in the realistic case where there is no available risk-free asset.
3

The Multiplicative Weights Update Algorithm for Mixed Integer NonLinear Programming : Theory, Applications, and Limitations / L'Algorithme Multiplicative Weights Update pour la Programmation non linéaire en nombres entiers : Théorie, Applications et Limites

Mencarelli, Luca 04 December 2017 (has links)
L'objectif de cette thèse consiste à présenter un nouvel algorithme pour la programmation non linéaire en nombres entiers, inspirée par la méthode Multiplicative Weights Update et qui compte sur une nouvelle classe de reformulations, appelées les reformulations ponctuelles.La programmation non linéaire en nombres entiers est un sujet très difficile et fascinant dans le domaine de l'optimisation mathématique à la fois d'un point de vue théorique et computationnel. Il est possible de formuler de nombreux problèmes dans ce schéma général et, habituellement, ils posent de réels défis en termes d'efficacité et de précision de la solution obtenue quant aux procédures de résolution.La thèse est divisée en trois parties principales : une introduction composée par le Chapitre 1, une définition théorique du nouvel algorithme dans le Chapitre 2 et l'application de cette nouvelle méthodologie à deux problèmes concrets d'optimisation, tels que la sélection optimale du portefeuille avec le critère moyenne-variance dans le Chapitre 3 et le problème du sac à dos non linéaire dans le Chapitre 4. Conclusions et questions ouvertes sont présentées dans le Chapitre 5. / This thesis presents a new algorithm for Mixed Integer NonLinear Programming, inspired by the Multiplicative Weights Update framework and relying on a new class of reformulations, called the pointwise reformulations.Mixed Integer NonLinear Programming is a hard and fascinating topic in Mathematical Optimization both from a theoretical and a computational viewpoint. Many real-word problems can be cast this general scheme and, usually, are quite challenging in terms of efficiency and solution accuracy with respect to the solving procedures.The thesis is divided in three main parts: a foreword consisting in Chapter 1, a theoretical foundation of the new algorithm in Chapter 2, and the application of this new methodology to two real-world optimization problems, namely the Mean-Variance Portfolio Selection in Chapter 3, and the Multiple NonLinear Separable Knapsack Problem in Chapter 4. Conclusions and open questions are drawn in Chapter 5.
4

Choix de portefeuille de grande taille et mesures de risque pour preneurs de décision pessimistes

Noumon, Codjo Nérée Gildas Maxime 08 1900 (has links)
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées. Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère. Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays. Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011. / This thesis consists of three chapters on the topics of portfolio choice in a high-dimensional context, and risk measurement. The first chapter addresses the estimation error issue that arises when constructing large portfolios in the mean-variance framework. The second chapter investigates the relevance of currency risk for optimal domestic portfolios, evaluates their ability of to diversify away currency risk, and study the links between portfolio weights stability and currency risk. Finally, under the assumption that decision makers are pessimistic, the third chapter derives the risk premium, propose a measure of the degree of pessimism, and provide a statistical framework for their estimation. The first chapter improves the performance of the optimal portfolio weig-hts obtained under the mean-variance framework of Markowitz (1952). Indeed, these weights give unsatisfactory results, when the mean and variance are replaced by their sample counterparts (plug-in rules). This problem is amplified when the number of assets is large and the sample covariance is singular or nearly singular. The chapter investigates four regularization techniques to stabilizing the inverse of the covariance matrix: the ridge, spectral cut-off, Landweber-Fridman, and LARS Lasso. These four methods involve a tuning parameter that needs to be selected. The main contribution is to derive a data-based method for selecting the tuning parameter in an optimal way, i.e. in order to minimize the expected loss in utility of a mean-variance investor. The cross-validation type criterion derived is found to take a similar form for the four regularization methods. The resulting regularized rules are compared to the sample-based mean-variance portfolio and the naive 1/N strategy in terms of in-sample and out-of-sample Sharpe ratio and expected loss in utility. The main finding is that regularization to covariance matrix significantly improves the performance of the mean-variance problem and outperforms the naive portfolio, especially in ill-posed cases, as suggested by our simulations and empirical studies. In the second chapter, we investigate the extent to which optimal and stable portfolios of domestic assets can reduce or eliminate currency risk. This is done using monthly returns on 48 U.S. industries, from 1976 to 2008. To tackle the instabilities inherent to large portfolios, we use the spectral cut-off regularization described in Chapter 1. This gives rise to a family of stable global minimum portfolios that allows investors to select different percentages of principal components for portfolio construction. Our empirical tests are based on a conditional International Asset Pricing Model (IAPM), augmented with the size and book-to-market factors of Fama and French (1993). Using two trade-weighted currency indices of industrialized countries currencies and emerging markets currencies, we find that currency risk is priced and time-varying for global minimum portfolios. These strategies also lead to a significant reduction in the exposure to currency risk, while keeping the average premium contribution to total premium approximately the same. The global minimum weights considered are an alternative to market capitalization weights used in the U.S. market index. Therefore, our findings complement the well established results that currency risk is significantly priced and economically meaningful at the industry and country level in most countries. Finally, the third chapter derives a measure of the risk premium for rank-dependent preferences and proposes a measure of the degree of pessimism, given a distortion function. The introduced measures generalize the common risk measures derived in the expected utility theory framework, which is frequently violated in both experimental and real-life situations. These measures are derived in the neighborhood of a given random loss variable, using the notion of local utility function. A particular interest is devoted to the CVaR, which is now widely used for asset allocation and has been advocated to complement the Value-at-risk (VaR) proposed since 1996 by the Basel Committee on Banking Supervision. We provide the statistical framework needed to conduct inference on the derived measures. Finally, the proposed estimators
5

Choix de portefeuille de grande taille et mesures de risque pour preneurs de décision pessimistes

Noumon, Codjo Nérée Gildas Maxime 08 1900 (has links)
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées. Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère. Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays. Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011. / This thesis consists of three chapters on the topics of portfolio choice in a high-dimensional context, and risk measurement. The first chapter addresses the estimation error issue that arises when constructing large portfolios in the mean-variance framework. The second chapter investigates the relevance of currency risk for optimal domestic portfolios, evaluates their ability of to diversify away currency risk, and study the links between portfolio weights stability and currency risk. Finally, under the assumption that decision makers are pessimistic, the third chapter derives the risk premium, propose a measure of the degree of pessimism, and provide a statistical framework for their estimation. The first chapter improves the performance of the optimal portfolio weig-hts obtained under the mean-variance framework of Markowitz (1952). Indeed, these weights give unsatisfactory results, when the mean and variance are replaced by their sample counterparts (plug-in rules). This problem is amplified when the number of assets is large and the sample covariance is singular or nearly singular. The chapter investigates four regularization techniques to stabilizing the inverse of the covariance matrix: the ridge, spectral cut-off, Landweber-Fridman, and LARS Lasso. These four methods involve a tuning parameter that needs to be selected. The main contribution is to derive a data-based method for selecting the tuning parameter in an optimal way, i.e. in order to minimize the expected loss in utility of a mean-variance investor. The cross-validation type criterion derived is found to take a similar form for the four regularization methods. The resulting regularized rules are compared to the sample-based mean-variance portfolio and the naive 1/N strategy in terms of in-sample and out-of-sample Sharpe ratio and expected loss in utility. The main finding is that regularization to covariance matrix significantly improves the performance of the mean-variance problem and outperforms the naive portfolio, especially in ill-posed cases, as suggested by our simulations and empirical studies. In the second chapter, we investigate the extent to which optimal and stable portfolios of domestic assets can reduce or eliminate currency risk. This is done using monthly returns on 48 U.S. industries, from 1976 to 2008. To tackle the instabilities inherent to large portfolios, we use the spectral cut-off regularization described in Chapter 1. This gives rise to a family of stable global minimum portfolios that allows investors to select different percentages of principal components for portfolio construction. Our empirical tests are based on a conditional International Asset Pricing Model (IAPM), augmented with the size and book-to-market factors of Fama and French (1993). Using two trade-weighted currency indices of industrialized countries currencies and emerging markets currencies, we find that currency risk is priced and time-varying for global minimum portfolios. These strategies also lead to a significant reduction in the exposure to currency risk, while keeping the average premium contribution to total premium approximately the same. The global minimum weights considered are an alternative to market capitalization weights used in the U.S. market index. Therefore, our findings complement the well established results that currency risk is significantly priced and economically meaningful at the industry and country level in most countries. Finally, the third chapter derives a measure of the risk premium for rank-dependent preferences and proposes a measure of the degree of pessimism, given a distortion function. The introduced measures generalize the common risk measures derived in the expected utility theory framework, which is frequently violated in both experimental and real-life situations. These measures are derived in the neighborhood of a given random loss variable, using the notion of local utility function. A particular interest is devoted to the CVaR, which is now widely used for asset allocation and has been advocated to complement the Value-at-risk (VaR) proposed since 1996 by the Basel Committee on Banking Supervision. We provide the statistical framework needed to conduct inference on the derived measures. Finally, the proposed estimators
6

Optimal portfolio selection with transaction costs

Koné, N'Golo 05 1900 (has links)
Le choix de portefeuille optimal d'actifs a été depuis longtemps et continue d'être un sujet d'intérêt majeur dans le domaine de la finance. L'objectif principal étant de trouver la meilleure façon d'allouer les ressources financières dans un ensemble d'actifs disponibles sur le marché financier afin de réduire les risques de fluctuation du portefeuille et d'atteindre des rendements élevés. Néanmoins, la littérature de choix de portefeuille a connu une avancée considérable à partir du 20ieme siècle avec l'apparition de nombreuses stratégies motivées essentiellement par le travail pionnier de Markowitz (1952) qui offre une base solide à l'analyse de portefeuille sur le marché financier. Cette thèse, divisée en trois chapitres, contribue à cette vaste littérature en proposant divers outils économétriques pour améliorer le processus de sélection de portefeuilles sur le marché financier afin d'aider les intervenants de ce marché. Le premier chapitre, qui est un papier joint avec Marine Carrasco, aborde un problème de sélection de portefeuille avec coûts de transaction sur le marché financier. Plus précisément, nous développons une procédure de test simple basée sur une estimation de type GMM pour évaluer l'effet des coûts de transaction dans l'économie, quelle que soit la forme présumée des coûts de transaction dans le modèle. En fait, la plupart des études dans la littérature sur l'effet des coûts de transaction dépendent largement de la forme supposée pour ces frictions dans le modèle comme cela a été montré à travers de nombreuses études (Dumas and Luciano (1991), Lynch and Balduzzi (1999), Lynch and Balduzzi (2000), Liu and Loewenstein (2002), Liu (2004), Lesmond et al. (2004), Buss et al. (2011), Gârleanu and Pedersen (2013), Heaton and Lucas (1996)). Ainsi, pour résoudre ce problème, nous développons une procédure statistique, dont le résultat est indépendant de la forme des coûts de transaction, pour tester la significativité de ces coûts dans le processus d'investissement sur le marché financier. Cette procédure de test repose sur l'hypothèse que le modèle estimé par la méthode des moments généralisés (GMM) est correctement spécifié. Un test commun utilisé pour évaluer cette hypothèse est le J-test proposé par Hansen (1982). Cependant, lorsque le paramètre d'intérêt se trouve au bord de l'espace paramétrique, le J-test standard souffre d'un rejet excessif. De ce fait, nous proposons une procédure en deux étapes pour tester la sur-identification lorsque le paramètre d'intérêt est au bord de l'espace paramétrique. Empiriquement, nous appliquons nos procédures de test à la classe des anomalies utilisées par Novy-Marx and Velikov (2016). Nous montrons que les coûts de transaction ont un effet significatif sur le comportement des investisseurs pour la plupart de ces anomalies. Par conséquent, les investisseurs améliorent considérablement les performances hors échantillon en tenant compte des coûts de transaction dans le processus d'investissement. Le deuxième chapitre aborde un problème dynamique de sélection de portefeuille de grande taille. Avec une fonction d'utilité exponentielle, la solution optimale se révèle être une fonction de l'inverse de la matrice de covariance des rendements des actifs. Cependant, lorsque le nombre d'actifs augmente, cet inverse devient peu fiable, générant ainsi une solution qui s'éloigne du portefeuille optimal avec de mauvaises performances. Nous proposons deux solutions à ce problème. Premièrement, nous pénalisons la norme des poids du portefeuille optimal dans le problème dynamique et montrons que la stratégie sélectionnée est asymptotiquement efficace. Cependant, cette méthode contrôle seulement en partie l'erreur d'estimation dans la solution optimale car elle ignore l'erreur d'estimation du rendement moyen des actifs, qui peut également être importante lorsque le nombre d'actifs sur le marché financier augmente considérablement. Nous proposons une méthode alternative qui consiste à pénaliser la norme de la différence de pondérations successives du portefeuille dans le problème dynamique pour garantir que la composition optimale du portefeuille ne fluctue pas énormément entre les périodes. Nous montrons que, sous des conditions de régularité appropriées, nous maîtrisons mieux l'erreur d'estimation dans le portefeuille optimal avec cette nouvelle procédure. Cette deuxième méthode aide les investisseurs à éviter des coûts de transaction élevés sur le marché financier en sélectionnant des stratégies stables dans le temps. Des simulations ainsi qu'une analyse empirique confirment que nos procédures améliorent considérablement la performance du portefeuille dynamique. Dans le troisième chapitre, nous utilisons différentes techniques de régularisation (ou stabilisation) empruntées à la littérature sur les problèmes inverses pour estimer le portefeuille diversifié tel que définie par Choueifaty (2011). En effet, le portefeuille diversifié dépend du vecteur de volatilité des actifs et de l'inverse de la matrice de covariance du rendement des actifs. En pratique, ces deux quantités doivent être remplacées par leurs contrepartie empirique. Cela génère une erreur d'estimation amplifiée par le fait que la matrice de covariance empirique est proche d'une matrice singulière pour un portefeuille de grande taille, dégradant ainsi les performances du portefeuille sélectionné. Pour résoudre ce problème, nous étudions trois techniques de régularisation, qui sont les plus utilisées : le rigde qui consiste à ajouter une matrice diagonale à la matrice de covariance, la coupure spectrale qui consiste à exclure les vecteurs propres associés aux plus petites valeurs propres, et Landweber Fridman qui est une méthode itérative, pour stabiliser l'inverse de matrice de covariance dans le processus d'estimation du portefeuille diversifié. Ces méthodes de régularisation impliquent un paramètre de régularisation qui doit être choisi. Nous proposons donc une méthode basée sur les données pour sélectionner le paramètre de stabilisation de manière optimale. Les solutions obtenues sont comparées à plusieurs stratégies telles que le portefeuille le plus diversifié, le portefeuille cible, le portefeuille de variance minimale et la stratégie naïve 1 / N à l'aide du ratio de Sharpe dans l'échantillon et hors échantillon. / The optimal portfolio selection problem has been and continues to be a subject of interest in finance. The main objective is to find the best way to allocate the financial resources in a set of assets available on the financial market in order to reduce the portfolio fluctuation risks and achieve high returns. Nonetheless, there has been a strong advance in the literature of the optimal allocation of financial resources since the 20th century with the proposal of several strategies for portfolio selection essentially motivated by the pioneering work of Markowitz (1952)which provides a solid basis for portfolio analysis on the financial market. This thesis, divided into three chapters, contributes to this vast literature by proposing various economic tools to improve the process of selecting portfolios on the financial market in order to help stakeholders in this market. The first chapter, a joint paper with Marine Carrasco, addresses a portfolio selection problem with trading costs on stock market. More precisely, we develop a simple GMM-based test procedure to test the significance of trading costs effect in the economy regardless of the form of the transaction cost. In fact, most of the studies in the literature about trading costs effect depend largely on the form of the frictions assumed in the model (Dumas and Luciano (1991), Lynch and Balduzzi (1999), Lynch and Balduzzi (2000), Liu and Loewenstein (2002), Liu (2004), Lesmond et al. (2004), Buss et al. (2011), Gârleanu and Pedersen (2013), Heaton and Lucas (1996)). To overcome this problem, we develop a simple test procedure which allows us to test the significance of trading costs effect on a given asset in the economy without any assumption about the form of these frictions. Our test procedure relies on the assumption that the model estimated by GMM is correctly specified. A common test used to evaluate this assumption is the standard J-test proposed by Hansen (1982). However, when the true parameter is close to the boundary of the parameter space, the standard J-test based on the chi2 critical value suffers from overrejection. To overcome this problem, we propose a two-step procedure to test overidentifying restrictions when the parameter of interest approaches the boundary of the parameter space. In an empirical analysis, we apply our test procedures to the class of anomalies used in Novy-Marx and Velikov (2016). We show that transaction costs have a significant effect on investors' behavior for most anomalies. In that case, investors significantly improve out-of-sample performance by accounting for trading costs. The second chapter addresses a multi-period portfolio selection problem when the number of assets in the financial market is large. Using an exponential utility function, the optimal solution is shown to be a function of the inverse of the covariance matrix of asset returns. Nonetheless, when the number of assets grows, this inverse becomes unreliable, yielding a selected portfolio that is far from the optimal one. We propose two solutions to this problem. First, we penalize the norm of the portfolio weights in the dynamic problem and show that the selected strategy is asymptotically efficient. However, this method partially controls the estimation error in the optimal solution because it ignores the estimation error in the expected return, which may also be important when the number of assets in the financial market increases considerably. We propose an alternative method that consists of penalizing the norm of the difference of successive portfolio weights in the dynamic problem to guarantee that the optimal portfolio composition does not fluctuate widely between periods. We show, under appropriate regularity conditions, that we better control the estimation error in the optimal portfolio with this new procedure. This second method helps investors to avoid high trading costs in the financial market by selecting stable strategies over time. Extensive simulations and empirical results confirm that our procedures considerably improve the performance of the dynamic portfolio. In the third chapter, we use various regularization (or stabilization) techniques borrowed from the literature on inverse problems to estimate the maximum diversification as defined by Choueifaty (2011). In fact, the maximum diversification portfolio depends on the vector of asset volatilities and the inverse of the covariance matrix of assets distribution. In practice, these two quantities need to be replaced by their sample counterparts. This results in estimation error which is amplified by the fact that the sample covariance matrix may be close to a singular matrix in a large financial market, yielding a selected portfolio far from the optimal one with very poor performance. To address this problem, we investigate three regularization techniques, such as the ridge, the spectral cut-off, and the Landweber-Fridman, to stabilize the inverse of the covariance matrix in the investment process. These regularization schemes involve a tuning parameter that needs to be chosen. So, we propose a data-driven method for selecting the tuning parameter in an optimal way. The resulting regularized rules are compared to several strategies such as the most diversified portfolio, the target portfolio, the global minimum variance portfolio, and the naive 1/N strategy in terms of in-sample and out-of-sample Sharpe ratio.

Page generated in 0.0919 seconds