Return to search

Identification électromagnétique de petites inclusions enfouies

L'objet de la thèse est la détection électromagnétique non-itérative de petits objets enfouis. Le problème direct de diffraction est abordé en utilisant une formule asymptotique rigoureuse du champ diffracté par des inclusions dont la taille caractéristique est petite devant la longueur d'onde de leur illumination dans le milieu d'enfouissement. La prise en compte de la diffraction multiple dans le cas de deux inclusions sphériques est abordée grâce à un tenseur de polarisation spécifique qui est calculé dans un système approprié de coordonnées bisphériques. Le modèle de Foldy-Lax est aussi utilisé afin de prendre en compte le couplage entre plusieurs inclusions. Les simulations numériques montrent que cet effet de couplage ne peut être ressenti qu'en leurs voisinages immédiats. Une configuration d'enfouissement en demi-espace est aussi étudiée en détail. Les dyades de Green alors nécessaires sont calculées de manière exacte par "force brutale" numérique. Puis trois méthodes approchées de calcul des intégrales de Sommerfeld qui sont impliquées sont proposées, les simulations montrant qu'elles font gagner un temps de calcul significatif dans le calcul de ces dyades, tout en étant de précision convenable. La prise en compte du couplage entre une sphère et l'interface est aussi investiguée grâce à un tenseur de polarisation adéquat en coordonnées bisphériques (de facto, une des deux sphères dégénère en cette interface). A chaque fois, les champs diffractés simulés par la méthode asymptotique sont comparés à des champs obtenus par la méthode dite des dipôles couplés (CDM). Les résultats montrent que la méthode asymptotique fournit des valeurs du champ diffracté satisfaisantes tant que les tailles des inclusions restent assez petites devant la longueur d'onde. L'algorithme d'imagerie MUSIC est quant à lui utilisé pour détecter ces inclusions à partir de leur matrice de réponse multistatique (MSR) collectée via un réseau plan d'extension limitée de dipôles émetteurs-récepteurs idéaux. L'analyse des valeurs et des vecteurs singuliers de la matrice MSR montre qu'il existe une différence entre les données calculées par la méthode asymptotique et celles calculées par la méthode CDM. Mais cette différence ne persiste pas si l'on considère des données bruitées, même à relativement faible niveau de bruit. Dans les deux cas, MUSIC permet une estimation fiable de la position des inclusions, la notion de "super-localisation" étant en particulier discutée. Une méthode est par ailleurs proposée afin de détecter l'angle d'inclinaison d'un ellipsoïde incliné enfoui.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00651167
Date29 September 2008
CreatorsGdoura, Souhir
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0054 seconds