Return to search

Efficient Querying and Analytics of Semantic Web Data / Interrogation et Analyse Efficiente des Données du Web Sémantique

L'utilité et la pertinence des données se trouvent dans l'information qui peut en être extraite.Le taux élevé de publication des données et leur complexité accrue, par exemple dans le cas des données du Web sémantique autodescriptives et hétérogènes, motivent l'intérêt de techniques efficaces pour la manipulation de données.Dans cette thèse, nous utilisons la technologie mature de gestion de données relationnelles pour l'interrogation des données du Web sémantique.La première partie se concentre sur l'apport de réponse aux requêtes sur les données soumises à des contraintes RDFS, stockées dans un système de gestion de données relationnelles. L'information implicite, résultant du raisonnement RDF est nécessaire pour répondre correctement à ces requêtes.Nous introduisons le fragment des bases de données RDF, allant au-delà de l'expressivité des fragments étudiés précédemment.Nous élaborons de nouvelles techniques pour répondre aux requêtes dans ce fragment, en étendant deux approches connues de manipulation de données sémantiques RDF, notamment par saturation de graphes et reformulation de requêtes.En particulier, nous considérons les mises à jour de graphe au sein de chaque approche et proposerons un procédé incrémental de maintenance de saturation. Nous étudions expérimentalement les performances de nos techniques, pouvant être déployées au-dessus de tout moteur de gestion de données relationnelles.La deuxième partie de cette thèse considère les nouvelles exigences pour les outils et méthodes d'analyse de données, issues de l'évolution du Web sémantique.Nous revisitons intégralement les concepts et les outils pour l'analyse de données, dans le contexte de RDF.Nous proposons le premier cadre formel pour l'analyse d'entrepôts RDF. Notamment, nous définissons des schémas analytiques adaptés aux graphes RDF hétérogènes à sémantique riche, des requêtes analytiques qui (au-delà de cubes relationnels) permettent l'interrogation flexible des données et schémas, ainsi que des opérations d'agrégation puissantes de type OLAP. Des expériences sur une plateforme entièrement implémentée démontrent l'intérêt pratique de notre approche. / The utility and relevance of data lie in the information that can be extracted from it.The high rate of data publication and its increased complexity, for instance the heterogeneous, self-describing Semantic Web data, motivate the interest in efficient techniques for data manipulation.In this thesis we leverage mature relational data management technology for querying Semantic Web data.The first part focuses on query answering over data subject to RDFS constraints, stored in relational data management systems. The implicit information resulting from RDF reasoning is required to correctly answer such queries. We introduce the database fragment of RDF, going beyond the expressive power of previously studied fragments. We devise novel techniques for answering Basic Graph Pattern queries within this fragment, exploring the two established approaches for handling RDF semantics, namely graph saturation and query reformulation. In particular, we consider graph updates within each approach and propose a method for incrementally maintaining the saturation. We experimentally study the performance trade-offs of our techniques, which can be deployed on top of any relational data management engine.The second part of this thesis considers the new requirements for data analytics tools and methods emerging from the development of the Semantic Web. We fully redesign, from the bottom up, core data analytics concepts and tools in the context of RDF data. We propose the first complete formal framework for warehouse-style RDF analytics. Notably, we define analytical schemas tailored to heterogeneous, semantic-rich RDF graphs, analytical queries which (beyond relational cubes) allow flexible querying of the data and the schema as well as powerful aggregation and OLAP-style operations. Experiments on a fully-implemented platform demonstrate the practical interest of our approach.

Identiferoai:union.ndltd.org:theses.fr/2014PA112218
Date22 September 2014
CreatorsRoatis, Alexandra
ContributorsParis 11, Manolescu Goujot, Ioana Gabriela, Goasdoué, François, Colazzo, Dario
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.002 seconds