L’imagerie par résonance magnétique pondérée en diffusion est une modalité d’imagerie médicale non invasive qui permet de mesurer les déplacements microscopiques des molécules d’eau dans les tissus biologiques. Il est possible d’utiliser cette information pour inférer la structure du cerveau. Les techniques de modélisation locale de la diffusion permettent de calculer l’orientation et la géométrie des tissus de la matière blanche.
Cette thèse s’intéresse à l’optimisation des métaparamètres utilisés par les modèles locaux. Nous dérivons des paramètres optimaux qui améliorent la qualité des métriques de diffusion locale, de la tractographie de la matière blanche et de la connectivité globale. L’échantillonnage de l’espace-q est un des paramètres principaux qui limitent les types de modèle et d’inférence applicable sur des données acquises en clinique. Dans cette thèse, nous développons une technique d’échantillonnage de l’espace-q permettant d’utiliser l’acquisition comprimée pour réduire le temps d’acquisition nécessaire.
Identifer | oai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/11179 |
Date | January 2017 |
Creators | Paquette, Michael |
Contributors | Descoteaux, Maxime |
Publisher | Université de Sherbrooke |
Source Sets | Université de Sherbrooke |
Language | French, English |
Detected Language | French |
Type | Thèse |
Rights | © Michael Paquette |
Page generated in 0.0024 seconds