Return to search

Previsão de séries temporais usando séries exógenas e combinação de redes neurais aplicada ao mercado financeiro

Made available in DSpace on 2014-06-12T15:56:23Z (GMT). No. of bitstreams: 2
arquivo2920_1.pdf: 2753004 bytes, checksum: d9cabbcda1b022b793399cc38a9d033c (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2008 / A previsão de séries temporais tem sido usada em diversos problemas do mundo real,
tais como: meteorologia, previsão de carga em redes de computadores, análise de
mercado, entre outras, com o objetivo de minimizar riscos, auxiliar no planejamento e
na tomada de decisões.
Nesta dissertação, as séries temporais são analisadas para realizar previsões de
cotações de ações do mercado financeiro e, para tanto, uma metodologia baseada no
uso de séries exógenas e de combinação de classificadores é proposta.
As principais contribuições do presente trabalho são: i) utilização de séries
exógenas como variáveis de entrada para o classificador a fim de capturar
informações externas que influenciam na série a ser prevista; ii) utilização de
combinação de classificadores, em especial, combinação de Redes Neurais do tipo
MLP (Multi-Layer Perceptron); e, iii) concepção de uma nova medida de
desempenho SLG (Sum of Loses and Gains), que é mais aderente na área de
investimentos. Além disso, foram propostas diferentes abordagens para pré-processar
os dados.
Os estudos experimentais foram realizados utilizando a série temporal
correspondente à ação preferencial da Petrobras (PETR4). Os resultados mostraram
que o modelo proposto superou os modelos tradicionais, conseguindo prever a série
com maior precisão e relevância para os investidores

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/2298
Date31 January 2008
CreatorsChristovam de Amorim Neto, Manoel
ContributorsDarmiton da Cunha Cavalcanti, George
PublisherUniversidade Federal de Pernambuco
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds