The wavelet Galerkin scheme for the fast solution of boundary integral equations produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that stays proportional to the number of unknowns. In this paper we present an adaptive version of the scheme which preserves the super-convergence of the Galerkin method.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:ch1-200600559 |
Date | 06 April 2006 |
Creators | Harbrecht, Helmut, Schneider, Reinhold |
Contributors | TU Chemnitz, SFB 393 |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:preprint |
Format | text/html, text/plain, image/png, image/gif, text/plain, image/gif, application/pdf, application/x-gzip, text/plain, application/zip |
Source | Preprintreihe des Chemnitzer SFB 393, 02-20 |
Page generated in 0.0023 seconds