Return to search

Ultra precision metrology : the key for mask lithography and manufacturing of high definition displays

Metrology is the science of measurement. It is also a prerequisite for maintaining a high quality in all manufacturing processes. In this thesis we will present the demands and solutions for ultra-precision metrology in the manufacturing of lithography masks for the TV-display industry. The extreme challenge that needs to be overcome is a measurement uncertainty of 10 nm on an absolute scale of more that 2 meters in X and Y. Materials such as metal, ceramic composites, quartz or glass are highly affected by the surrounding temperature when tolerances are specified at nanometer levels. Also the fact that the refractive index of air in the interferometers measuring absolute distances is affected by temperature, pressure, humidity and CO2 contents makes the reference measurements really challenging. This goes hand in hand with the ability of how to design a mask writer, a pattern generator with a performance good enough for writing masks for the display industry with sub-micron accuracy over areas of square meters.  As in many other areas in the industry high quality metrology is the key for success in developing high accuracy production tools. The aim of this thesis is therefore to discuss the metrology requirements of mask making for display screens. Defects that cause stripes in the image of a display, the so called “Mura” effect, are extremely difficult to measure as they are caused by spatially systematic errors in the mask writing process in the range of 10-20 nm. These errors may spatially extend in several hundreds of mm and are superposed by random noise with significantly higher amplitude compared to the 10-20 nm.  A novel method for measuring chromium patterns on glass substrates will also be presented in this thesis. This method will be compared to methods based on CCD and CMOS images. Different methods have been implementedin the Micronic MMS1500 large area measuring machine, which is the metrology tool used by the mask industry, for verifying the masks made by the Micronic mask writers. Using alternative methods in the same system has been very efficient for handling different measurement situations. Some of  the discussed methods are also used by the writers for calibration purposes. / QC 20110517

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-33788
Date January 2011
CreatorsEkberg, Peter
PublisherKTH, Mätteknik och optik, Stockholm : KTH Royal Institute of Technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-IIP, 1650-1888 ; 2011:04

Page generated in 0.0017 seconds