<p>Systems controlled by embedded computers become indispensable in our lives and can be found in avionics, automotive industry, home appliances, medicine, telecommunication industry, mecatronics, space industry, etc. Fast, accurate and flexible performance estimation tools giving feedback to the designer in every design phase are a vital part of a design process capable to produce high quality designs of such embedded systems.</p><p>In the past decade, the limitations of models considering fixed task execution times have been acknowledged for large application classes within soft real-time systems. A more realistic model considers the tasks having varying execution times with given probability distributions. No restriction has been imposed in this thesis on the particular type of these functions. Considering such a model, with specified task execution time probability distribution functions, an important performance indicator of the system is the expected deadline miss ratio of tasks or task graphs.</p><p>This thesis proposes two approaches for obtaining this indicator in an analytic way. The first is an exact one while the second approach provides an approximate solution trading accuracy for analysis speed. While the first approach can efficiently be applied to monoprocessor systems, it can handle only very small multi-processor applications because of complexity reasons. The second approach, however, can successfully handle realistic multiprocessor applications. Experiments show the efficiency of the proposed techniques.</p> / Report code: LiU-Tek-Lic-2002:58.
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-5730 |
Date | January 2002 |
Creators | Manolache, Sorin |
Publisher | Linköping University, Linköping University, ESLAB - Embedded Systems Laboratory, Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, monograph, text |
Relation | Linköping Studies in Science and Technology. Thesis, 0280-7971 ; 985 |
Page generated in 0.0021 seconds