Dans cette thèse nous contribuons à répondre aux questions sur les processus dynamiques sur réseaux temporels. En particulier, nous etudions l'influence des représentations de données sur les simulations des processus épidémiques, le niveau de détail nécessaire pour la représentation des données et sa dépendance des paramètres de la propagation de l'épidémie. Avec l'introduction de la matrice de distributions du temps de contacts nous espérons pouvoir améliorer dans le futur la précision des prédictions des épidémies et des stratégies d'immunisation en intégrant cette représentation des données aux modèles d'épidémies multi-échelles. De plus nous montrons comment les processus épidémiques dynamiques sont influencés par les propriétés temporelles des données. / In this thesis we contribute to provide insights into questions concerning dynamic epidemic processes on data-driven, temporal networks. In particular, we investigate the influence of data representations on the outcome of epidemic processes, shedding some light on the question how much detail is necessary for the data representation and its dependence on the spreading parameters. By introducing an improvement to the contact matrix representation we provide a data representation that could in the future be integrated into multi-scale epidemic models in order to improve the accuracy of predictions and corresponding immunization strategies. We also point out some of the ways dynamic processes are influenced by temporal properties of the data.
Identifer | oai:union.ndltd.org:theses.fr/2013AIXM4066 |
Date | 24 October 2013 |
Creators | Machens, Anna |
Contributors | Aix-Marseille, Barrat, Alain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds