• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semantic Representation of a Heterogeneous Document Corpus for an Innovative Information Retrieval Model : Application to the Construction Industry / Représentation Sémantique de Corpus de Documents Hétérogènes pour un Modèle de Recherche d'Information Novateur : Application au Domaine du Bâtiment

Charbel, Nathalie 21 December 2018 (has links)
Les avancées récentes des Technologies de l'Information et de la Communication (TIC) ont entraîné des transformations radicales de plusieurs secteurs de l'industrie. L'adoption des technologies du Web Sémantique a démontré plusieurs avantages, surtout dans une application de Recherche d'Information (RI) : une meilleure représentation des données et des capacités de raisonnement sur celles-ci. Cependant, il existe encore peu d’applications industrielles car il reste encore des problèmes non résolus, tels que la représentation de documents hétérogènes interdépendants à travers des modèles de données sémantiques et la représentation des résultats de recherche accompagnés d'informations contextuelles.Dans cette thèse, nous abordons deux défis principaux. Le premier défi porte sur la représentation de la connaissance relative à un corpus de documents hétérogènes couvrant à la fois le contenu des documents fortement lié à un domaine métier ainsi que d'autres aspects liés à la structure de ces documents tels que leurs métadonnées, les relations inter et intra-documentaires (p. ex., les références entre documents ou parties de documents), etc. Le deuxième défi porte sur la construction des résultats de RI, à partir de ce corpus de documents hétérogènes, aidant les utilisateurs à mieux interpréter les informations pertinentes de leur recherche surtout quand il s'agit d'exploiter les relations inter/intra-documentaires.Pour faire face à ces défis, nous proposons tout d'abord une représentation sémantique du corpus de documents hétérogènes à travers un modèle de graphe sémantique couvrant à la fois les dimensions structurelle et métier du corpus. Ensuite, nous définissons une nouvelle structure de données pour les résultats de recherche, extraite à partir de ce graphe, qui incorpore les informations pertinentes directes ainsi qu'un contexte structurel et métier. Afin d'exploiter cette nouvelle structure dans un modèle de RI novateur, nous proposons une chaine de traitement automatique de la requête de l'utilisateur, allant du module d'interprétation de requête, aux modules de recherche, de classement et de présentation des résultats. Bien que nous proposions une chaine de traitement complète, nos contributions se focalisent sur les modules de recherche et de classement.Nous proposons une solution générique qui peut être appliquée dans différents domaines d'applications métiers. Cependant, dans cette thèse, les expérimentations ont été appliquées au domaine du Bâtiment et Travaux Publics (BTP), en s'appuyant sur des projets de construction. / The recent advances of Information and Communication Technology (ICT) have resulted in the development of several industries. Adopting semantic technologies has proven several benefits for enabling a better representation of the data and empowering reasoning capabilities over it, especially within an Information Retrieval (IR) application. This has, however, few applications in the industries as there are still unresolved issues, such as the shift from heterogeneous interdependent documents to semantic data models and the representation of the search results while considering relevant contextual information. In this thesis, we address two main challenges. The first one focuses on the representation of the collective knowledge embedded in a heterogeneous document corpus covering both the domain-specific content of the documents, and other structural aspects such as their metadata, their dependencies (e.g., references), etc. The second one focuses on providing users with innovative search results, from the heterogeneous document corpus, helping the users in interpreting the information that is relevant to their inquiries and tracking cross document dependencies.To cope with these challenges, we first propose a semantic representation of a heterogeneous document corpus that generates a semantic graph covering both the structural and the domain-specific dimensions of the corpus. Then, we introduce a novel data structure for query answers, extracted from this graph, which embeds core information together with structural-based and domain-specific context. In order to provide such query answers, we propose an innovative query processing pipeline, which involves query interpretation, search, ranking, and presentation modules, with a focus on the search and ranking modules.Our proposal is generic as it can be applicable in different domains. However, in this thesis, it has been experimented in the Architecture, Engineering and Construction (AEC) industry using real-world construction projects.
2

Processus épidémiques sur réseaux dynamiques / Epidemic Processes on Dynamic Networks

Machens, Anna 24 October 2013 (has links)
Dans cette thèse nous contribuons à répondre aux questions sur les processus dynamiques sur réseaux temporels. En particulier, nous etudions l'influence des représentations de données sur les simulations des processus épidémiques, le niveau de détail nécessaire pour la représentation des données et sa dépendance des paramètres de la propagation de l'épidémie. Avec l'introduction de la matrice de distributions du temps de contacts nous espérons pouvoir améliorer dans le futur la précision des prédictions des épidémies et des stratégies d'immunisation en intégrant cette représentation des données aux modèles d'épidémies multi-échelles. De plus nous montrons comment les processus épidémiques dynamiques sont influencés par les propriétés temporelles des données. / In this thesis we contribute to provide insights into questions concerning dynamic epidemic processes on data-driven, temporal networks. In particular, we investigate the influence of data representations on the outcome of epidemic processes, shedding some light on the question how much detail is necessary for the data representation and its dependence on the spreading parameters. By introducing an improvement to the contact matrix representation we provide a data representation that could in the future be integrated into multi-scale epidemic models in order to improve the accuracy of predictions and corresponding immunization strategies. We also point out some of the ways dynamic processes are influenced by temporal properties of the data.
3

Représentation et traitement des connaissances en logique multivalente : cas d'une répartition non uniforme des degrés de vérité / Representation and management of imperfect knowledge in multivalued logic : Case of unbalanced truth degrees

Chaoued, Nouha 30 November 2017 (has links)
Dans la plupart des activités quotidiennes, l’Homme a tendance à utiliser des connaissances imparfaites. L’imperfection se rapporte à trois volets : l’imprécision, l’incertitude et l’incomplétude. Nous thèse concerne les connaissances imprécises. En particulier, nous nous intéressons au traitement qualitatif de l’information imprécise dans les systèmes à base de connaissances. Diverses approches ont été proposées pour traiter les connaissances imprécises, en particulier, la logique floue et la logique multivalente. Les théories des ensembles flous et des multi-ensembles sont un moyen très approprié pour la représentation et la modélisation de l’imprécision.Notre travail s’inscrit dans le contexte de la logique multivalente. Celle-ci permet de représenter symboliquement des connaissances imprécises en utilisant des expressions adverbiales ordonnées du langage naturel. L’utilisation de ces degrés symboliques est plus compréhensible par les experts. Ce type de représentation de données est indépendant du type de leurs domaines de discours. Ainsi, la manipulation des connaissances abstraites ou faisant référence à des échelles numériques se fait de la même manière.Dans la littérature, le traitement de l’information imprécise repose sur une hypothèse implicite de la répartition uniforme des degrés de vérité sur une échelle de 0 à 1. Néanmoins, dans certains cas, un sous-domaine de cette échelle peut être plus informatif et peut inclure plus de termes. Dans ce cas, l’information est définie par des termes déséquilibrés, c’est-à-dire qui ne sont pas uniformément répartis et/ou symétriques par rapport à un terme milieu. Par exemple, pour l’évaluation des apprenants, il est possible de considérer un seul terme négatif F correspondant à l’échec. Quant à la réussite, elle est décrite par plusieurs valeurs de mention, i.e. D, C, B et A. Ainsi, si le terme D est le seuil de la réussite, il est considéré comme le terme milieu avec un seul terme à sa gauche et trois à sa droite. Il s’agit alors d’un ensemble non uniforme.Dans ce travail, nous nous concentrons sur l'extension de la logique multivalente au cas des ensembles non uniformes. En s'appuyant sur notre étude de l'art, nous proposons de nouvelles approches pour représenter et traiter ces ensembles de termes. Tout d'abord, nous introduisons des algorithmes qui permettent de représenter des termes non uniformes à l'aide de termes uniformes et inversement. Ensuite, nous décrivons une méthode pour utiliser des modificateurs linguistiques initialement définis pour les termes uniformes avec des ensembles de termes non uniformes. Par la suite, nous présentons une approche de raisonnement basée sur le modèle du Modus Ponens Généralisé à l'aide des Modificateurs Symboliques Généralisés. Les modèles proposés sont mis en œuvre dans un nouveau système de décision fondé sur des règles pour la reconnaissance de l'odeur de camphre. Nous développons également un outil pour le diagnostic de l'autisme infantile. Les degrés de sévérité de l'atteinte par ce trouble autistique sont représentés par l'échelle d'évaluation de l'autisme infantile (CARS). Il s'agit d'une échelle non uniforme. / In most daily activities, humans use imprecise information derived from appreciation instead of exact measurements to make decisions. Various approaches were proposed to deal with imperfect knowledge, in particular, fuzzy logic and multi-valued logic. In this work, we treat the particular case of imprecise knowledge.Taking into account imprecise knowledge by computer systems is based on their representation by means of linguistic variables. Their values form a set of words expressing the different nuances of the treated information. For example, to judge the beauty of the Mona Lisa or the smell of a flower, it is not possible to give an exact value but an appreciation is given by a term like "beautiful" or "floral".In the literature, dealing with imprecise information relies on an implicit assumption: the distribution of terms is uniform on a scale ranging from 0 to 1. Nevertheless, in some cases, a sub-domain of this scale may be more informative and may include more terms. In this case, knowledge are represented by means of an unbalanced terms set, that is, not uniformly nor symmetrically distributed.We have noticed, in the literature, that in the context of fuzzy logic many researchers have dealt with these term sets. However, it is not the case for multi-valued logic. Thereby, in our work, we aim to establish a methodology to represent and manage this kind of data in the context of multi-valued logic. Two aspects are treated. The first one concerns the representation of terms within an unbalanced multi-set. The second deals with the treatment of such kind of imprecise knowledge, i.e. with symbolic modifiers and in reasoning process.In this work, we focus on unbalanced sets in the context of multi-valued logic. Basing on our study of art, we propose new approaches to represent and treat such term sets. First of all, we introduce algorithms that allow representing unbalanced terms within uniform ones and the inverse way. Then, we describe a method to use linguistic modifiers within unbalanced multi-sets. Afterward, we present a reasoning approach based on the Generalized Modus Ponens model using Generalized Symbolic Modifiers. The proposed models are implemented in a novel rule-based decision system for the camphor odor recognition within unbalanced multi-set. We also develop a tool for child autism diagnosis by means of unbalanced severity degrees of the Childhood Autism Rating Scale (CARS).

Page generated in 0.1369 seconds