The objective of this thesis research is to develop microelectronic acoustic technology towards biosensor applications. The development of a simple and robust resonator that employs simple microelectronic fabrication techniques for its construction could provide the foundation for a cost-effective sensor platform. Subsequent development of an appropriate surface chemistry treatment would functionalize the resonator as a biosensor. Implementation of this design in an array configuration allows for the development of ligand microarrays, which subsequently allows for multi-ligand recognition signatures as well as testing redundancy. The applications for such a tool extend to a myriad of applications, but the focus of this research is to develop this technology towards an early cancer detection capability.
Specifically, I develop a solidly-mounted resonator with thin-film ZnO as my active piezoelectric layer. These resonators undergo an extensive development process to arrive at a final device design and are fully characterized throughout by X-ray diffraction and scattering analysis. Employing silane chemistry, these resonators are functionalized as immunosensors by covalently binding antibodies to the surface of the device. The quality of the surface chemistry is fully assessed using water contact angle, atomic force microscopy and confocal laser scanning microscopy. Functionalized biosensors are then used to quantify the concentration of known proteins marker in both a purified medium
and a physiologically-relevant medium.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/26575 |
Date | 10 November 2008 |
Creators | Dickherber, Anthony |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0017 seconds