Return to search

Study on fabrication and characteristics of Zn-doped SiO2 thin film resistance random access memory

In this thesis, the resistance switching characteristic of Zn:SiO2 -based memory was studied. The resistive memory was fabricated by sputtering to deposit the Metal/Insulator/Metal (MIM) structure. The top and bottom layers were made by Pt and TiN respectively, and the insulator was Zn:SiO2 grown by co-sputtering with SiO2 and Zinc. We found that doping Zinc into SiO2 insulator induced the resistive switching characteristic.
By the treatment of supercritical carbon dioxide (SCCO2) in Zn:SiO2 -based device,the operation current would decrease. In the result of x-ray electron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) , it showed that the defects in Zn:SiO2 thin-film were reduced. And the electric conduction mechanism of low resistance state made a change from ohmic conduction to hopping conduction.
To emerge spontaneous phenomenon of hopping conduction, the memory devices were fabricated with a multi-layer structure. In Auger electron spectroscopy (AES), we found the signal of zinc, split into three different kinds of peaks, which met the multi-layer structure. From I-V sweep measurement, the multi-layer structure device could be appeared the spontaneous hopping conduction mechanism.
In order to find out the initial state of electric conduction mechanism .We measured the device of Pt/Zn:SiO2/TiN with constant current forming. We found the initial state of electric conduction path out successfully, and it¡¦s operation current below 10 uA.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0828111-131830
Date28 August 2011
CreatorsTung, Cheng-Wei
ContributorsDer-Shin Gan, Ting-Chang Chang, Tsung-Ming Tsai
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0828111-131830
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0024 seconds