La sénescence cellulaire et l'apoptose ont évolué comme des puissantes barrières protectrices contre la transformation néoplasique. La sénescence est un état d'arrêt permanent de la prolifération dans lequel les cellules restent métaboliquement actives. La sénescence cellulaire est déclenchée par différentes sources de stress, notamment les oncogènes activés, le dysfonctionnement des télomères, les dommages à l'ADN et des défauts dans la réplication provoqués par des agents génotoxiques, des espèces réactives de l'oxygène, etc. Ce processus complexe engage deux voies différentes de suppresseurs de tumeurs, les voies p53/p21 et p16INK4a/pRb, et les deux voies doivent être compromises dans les cellules humaines afin de contourner la sénescence. Par conséquent, décrire la relation entre l'activation des oncogènes, l'arrêt de la prolifération induite par la sénescence et l'échappement à l'état de sénescence est essentiel pour comprendre le processus de tumorigenèse.
KDM4A est un membre de la sous-famille KDM4 des Jumonji lysine déméthylases ciblant les variantes di- et triméthylées de l'histone H3 lysine 9 (H3K9) et l'histone H3 lysine 36 (H3K36). Les trois premiers membres de la sous-famille KDM4A, KDM4B et KDM4C sont également capables de lier l'histone 4 lysine 20 di-méthyl/tri-méthyl (H4K20me2/3) et l'histone 3 lysine 4 tri-méthyl (H3K4me3), via leurs domaines Tudor consécutifs. KDM4A module négativement l'activité de la voie p53, en ciblant directement le suppresseur de tumeur CHD5, et est également un régulateur négatif de la réponse aux dommages de l'ADN. Les niveaux d'expression de KDM4A sont souvent élevés dans les cellules cancéreuses et diminués pendant la sénescence cellulaire.
La motivation principale de cette thèse est d'élargir nos connaissances actuelles sur la façon dont la réorganisation de la chromatine influence la stabilité du phénotype de sénescence. Dans la première partie de ce travail, nous abordons la fonction de méthylation de H4K20 et H3K9, dans le contexte des foyers d'hétérochromatine associés à la sénescence (SAHF: senescence-associated heterochromatin foci). Nous démontrons que l'intégration de H4K20me3 dans les SAHF dépend de l'incorporation précédente de H3K9me3 et révélons les méthyltransférases H4K20 impliquées dans ce processus. Nous proposons un mécanisme moléculaire par lequel H4K20me3 et H3K9me3 coopèrent avec p53 dans la répression stable des gènes cibles de E2F au cours de la sénescence induite par l'oncogène Ras. Dans la deuxième partie de la thèse, nous présentons une voie de dégradation lysosomale (c'est-à-dire l'autophagie médiée par des chaperons) en tant que nouveau mécanisme potentiel par lequel les cellules modulent les niveaux de KDM4A pendant la sénescence. Nos résultats suggèrent que la méthylation dans les lysines des histones régule la stabilité de sénescence en réponse à l'oncogène Ras et révèlent le potentiel d'induction de la sénescence par inhibition ciblée de KDM4A dans le traitement du cancer. / Cellular senescence and apoptosis have evolved as potent protective barriers against neoplastic transformation. Senescence is a state of stable arrest of proliferation in which cells remain metabolically active. Cellular senescence is triggered by different sources of stress, including activated oncogenes, telomere dysfunction, DNA damage and replication defects elicited by genotoxic agents, reactive oxygen species, etc. This complex process engages two different tumor suppressor pathways, the p53/p21 and p16INK4a/pRb pathways that need to be compromised in human cells in order to circumvent the senescence-associated growth halt. Hence, describing the relationship between oncogene activation, senescence-induced proliferation arrest and escape from the senescence state remains essential to understand tumorigenesis.
KDM4A is a member of the KDM4 sub-family of Jumonji lysine demethylases targeting di- and tri-methylated histone H3 lysine 9 (H3K9) and histone H3 lysine 36 (H3K36). The first three sub-family members KDM4A, KDM4B and KDM4C are also able to bind histone 4 lysine 20 di-methyl/tri-methyl (H4K20me2/3) and histone 3 lysine 4 tri-methyl (H3K4me3), via their tandem Tudor domain. KDM4A negatively modulates the activity of the p53 pathway, by directly targeting the tumor suppressor CHD5, and is also a negative regulator of the DNA damage response. KDM4A expression levels are often elevated in cancer cells and decreased during cellular senescence.
The principal motivation for this thesis is to expand our current knowledge on how chromatin reorganization influences the stability of the senescence phenotype. In the first part of this work we address the function of H4K20 and H3K9 methylation, in the context of the senescence-associated heterochromatin foci (SAHF). We demonstrate that integration of H4K20me3 into the SAHF depends on the previous incorporation of H3K9me3 and reveal the H4K20 methyltransferases involved in this process. We propose a molecular mechanism by which H4K20me3 and H3K9me3 cooperate with p53 in the stable repression of E2F target genes during oncogenic Ras-induced senescence. In the second part of the thesis we present a lysosomal-degradation pathway (i.e. chaperone-mediated autophagy) as a novel potential mechanism by which cells modulate KDM4A protein levels during senescence. Our results strongly suggest that histone lysine methylation contributes to the stability of the senescence response to the Ras oncogene and reveal the potential of senescence induction by targeted inhibition of KDM4A in the treatment of cancer.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/28038 |
Date | 12 1900 |
Creators | Fernández Díaz, Erlinda |
Contributors | Mallette, Frédérick Antoine |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0028 seconds