Return to search

Dépôt de silicium polycristallin contenant du carbone pour des applications radiofréquence / Deposition of polycrystalline silicon engineered with carbon for Radio Frequency applications

Pour les futures applications en télécommunications 5G, des substrats à base de silicium présentant une faible perte de signal et une excellente linéarité sont nécessaires. Parmi les solutions envisagées, la technologie RF-SOI est la plus avancée. Son empilement contient une couche de Haute Résistivité (HR), riche en pièges pour les porteurs de charges, composée de silicium polycristallin (poly-Si) de haute pureté déposée sur l’oxyde natif d'un substrat HR (HR-Si). Ce système présente certaines limitations provenant essentiellement de l'interface HR-Si/SiO2 et de sa stabilité thermique, mais également de la résistivité insuffisante de la couche riche en pièges. L'objectif principal de cette thèse était d'explorer des approches innovantes pour résoudre ces difficultés tout en restant compatible avec la technologie silicium. Afin d’atteindre ces objectifs, du carbone a été ajouté dans le système au cours des différentes étapes d'élaboration: i) remplacement de la couche interfaciale de SiO2 par une couche mince de 3C-SiC et ii) ajout de carbone pendant le dépôt de poly-Si.En utilisant la technique de dépôt chimique en phase vapeur à pression atmosphérique, des couches HR de poly-Si à l'état de l'art ont été déposée sur oxyde natif avec une épaisseur pouvant aller jusqu'à quelques dizaines de µm. Les résultats ont montré que la résistivité de la couche de poly-Si n'était pas directement dépendante de la taille moyenne des grains. Le remplacement de l'oxyde interfacial par une couche mince de mono- ou de poly-SiC, ainsi que l'adaptation des conditions de croissance ont permis d'atteindre des propriétés équivalentes à l'état de l'art des couches HR de poly-Si. Cet empilement a l'avantage d'être plus stable thermiquement en évitant la dissolution de la couche interfaciale. Cependant, ces améliorations sont accompagnées d’une chute de la résistivité à l’interface attribuée à la conductivité importante du matériau SiC. Par ailleurs, les propriétés de la couche HR et sa stabilité thermique peuvent être améliorées en dopant le poly-Si avec du Carbone, si une concentration adéquate de cette impureté est utilisée. L'insertion périodique de couches minces de SiC dans le poly-Si conduit à la stabilité thermique la plus élevée et à une augmentation de la résistivité moyenne de la couche. Néanmoins, des diminutions périodiques de la résistivité sont observées à chaque insertion de SiC / For future 5G telecommunication applications, Si-based substrates with low signal loss and excellent linearity are required. Among the envisaged solutions, RF-SOI is the most advanced. Its stack contains a High Resistivity (HR) Trap-Rich (TR) layer composed of high purity polycrystalline silicon (poly-Si) deposited on thin SiO2 native oxide of a HR-Si substrate (HR-Si). Some limitations of such system come from the HR-Si/SiO2 interface and its thermal stability, while increasing the resistivity of the TR-layer is also suited. The main objective of this thesis was to explore innovative approaches for solving these difficulties while staying Si-compatible. Towards this end, carbon was added in the system at different elaboration stages by i) replacing the SiO2 interfacial layer by 3C-SiC and by ii) C-engineering of the poly-Si layer during deposition.Using Atmospheric Pressure Chemical Vapor Deposition technique, state-of-the-art poly-Si TR-layers were grown on native oxide with thickness up to few tens of µm. It was found that the resistivity of the poly-Si was not directly dependent on the average grain size. Replacing the interfacial oxide by a thin mono- or poly-SiC layer and adapting the growth process allowed reaching equivalent properties of the poly-Si with the benefit of superior thermal stability by avoiding the interfacial layer dissolution. But it is accompanied by the presence of a resistivity drop at the interface due to the conductivity of the SiC material. By doping the poly-Si with C, both the TR-layer properties and thermal stability can be improved when adequate concentration of this impurity is used. Periodic insertion of thin SiC layers inside the poly-Si led to the highest thermal stability and an increase of the layer mean resistivity while periodic resistivity reductions were observed at each SiC insertion

Identiferoai:union.ndltd.org:theses.fr/2019LYSE1059
Date17 May 2019
CreatorsYeghoyan, Taguhi
ContributorsLyon, Ferro, Gabriel, Soulière, Véronique
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds