This paper introduces a new way of solving an edge user allocation problem. The problem is to be solved with a network of spiking neurons. This network should quickly and with low energy cost solve the optimization problem of allocating users to servers and minimizing the amount of servers hired to reduce the related hiring cost. The demonstrated method is a simulation of a method which could be implemented onto neuromorphic hardware. It is written in Python using the Brian2 spiking neural network simulator. The core of the method involves simulating an energy function through the use of circuit motifs. The dynamics of these circuit motifs mimic a search for the lowest energy point in an energy landscape, corresponding to a valid solution for the edge user allocation problem. The paper also shows the results of testing this network within the Brian2 environment.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-93474 |
Date | January 2022 |
Creators | Petersson Steenari, Kim |
Publisher | Luleå tekniska universitet, Institutionen för system- och rymdteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds