Return to search

Optimization of DIC assisted hydrolytic conversion of polysaccharides (starch and cellulose)

Present state of art related to biomass conversion technology so far was found to concentrate on an enzymatic process, coupled with thermal pretreatment on biomass rich in cellulose. Biomass that rich in crude starch is also important in terms of strategic and economic point of view. The main objective of this study is to adopt a new strategy for a single step conversion of a crude starch material into oligosaccharide and glucose utilizing DIC technology. In contrast to existing thermal based pretreatment, DIC technology involves two vacuum cycles; first vacuum cycle was to increase steam accessibility on biomass and to reduce generation of steam condensate thus avoid losing of monosaccharide and hemicelluloses, while second vacuum cycle was to reduce potential thermal degradation of glucose. Distributions of products formed were found to be closely associated with severity of treatment on crude starch material. At lower DIC severity, pretreatment favors the formations of high oligosaccharide composition with small fraction of glucose; while at high DIC severity, pretreatment favors formation of high glucose as a major end product. During an exploratory study to establish the relevant reaction factors; vacuum cycle and moisture content were the two main factors influencing the conversion of crude starch into glucose.DIC starch conversion into glucose was found to be moisture dependent. Both factors were combined together to optimize the other three factors: pressure/temperature, treatment times, and acid concentration. High DIC severity treatment alone could convert nearly 50% of crude starch into glucose. During DIC optimization, an experimental design was developed and tested with DIC pretreatment in order to obtain a second order polynomial mathematical model that was then applied for response surface methodology (RSM). The interaction nature of above factors was examined and was found they depend on DIC treatment severity. Two experimental designs with low and high DIC severity were developed; Low DIC severity (acid: 0.01-0.05 molar, time: 0.5-3.0 min) and High DIC severity (acid: 0.05-0.20 molar, time: 3.0-10.0 min) with similar temperature range (144-165oC) were used. Data mining operation was done on RSM model to develop a kinetic model at both treatment severities. Kinetic data, including rate constant and activation energy were calculated from kinetic models of both severities to compare with actual dilute acidhydrolysis kinetic studies on two DIC treated samples. It was found that activation energy (Ea)for glucose generation at High DIC severity (Ea: 59.44 kJ/mol) was lower than at optimum dilute acid hydrolysis (Ea: 91.30 kJ/mol); while for glucose degradation, Ea was higher with High DIC severity (Ea: 144.12 kJ/mol) if compared to dilute acid hydrolysis (Ea: 45.14 kJ/mol).This indicates that glucose generation with DIC requires less energy while its degradation needs high energy. This combination was required to maximize glucose generation and minimize glucose degradation. Further studies with non-isothermal state during DIC and dilute acid hydrolysis support this finding. In normal polysaccharide conversion to low molecular weight (LMW) oligosaccharides and glucose procedures; two process steps were involved, namely the first process involved thermal pretreatment followed by a second process with dilute acid hydrolysis. In the present work, attempt was made to exclude dilute acid hydrolysis stage in order to establish that DIC process alone is sufficient for total polysaccharides conversion into LMW mainly glucose fraction. Information gathered from quantitative and statistical analysis on (i) exploratory studies, (ii) kinetic models from RSM of DIC process and (iii) kinetic data based on experimental works during dilute acid hydrolysis study; support the assumption that DIC treatment alone is sufficient for the total conversion required.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00986304
Date27 April 2012
CreatorsSarip, Harun
PublisherUniversité de La Rochelle
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0031 seconds