The identification of climate temperature-sensitive pathogens and infectious diseases is essential in addressing health risks resulting from global warming. Such research is especially crucial in regions where climate change may have a more significant impact like Russia. Recent studies have reasoned that the abundance of V. cholerae tox- is environmentally driven. The aim of the degree project is to investigate the spatial-temporal trends and thermo-climatic sensitivity of non-toxigenic V. cholerae abundance in Russia. This study employed spatial epidemiology tools to identify persistent clusters of the V. cholerae tox- isolation and areas for exploring temperature-depended patterns of the vibrio distribution. Correlation analysis was used to identify regions with temperature-driven Vibrio abundance – vibrioses and the V. cholerae tox- prevalence in water samples. GAM was applied to evaluate the relationship between V. cholerae tox- prevalence and the mean summer air temperature. The spatial analysis detected 16 persistent (7-8 year) clusters of V. cholerae tox- across the study period 2005-2021. The highest-risk areas are located between 54.70 and 55.15 latitudes. The persistent clusters should become targeted areas to improve sanitation conditions. A distinct significant thermo-climatic effect on the abundance of V. cholerae tox- in water basins was found in three Russian regions with temperate marine (the Kaliningrad region - Dwb) and sharp continental climatic conditions (the Irkutsk region - Dwb and the Republic of Sakha - Dwd). Finally, our results showed significant relationships between ambient summer temperature and vibriosis caused by V. cholerae tox- in the Rostov and Volgograd regions. Heat waves for both regions facilitated the eruption of reported vibriosis in 2007 and 2010. The study offers valuable outcomes to support simplified empirical evaluations of the potential hazards of vibrio abundance that might be useful locally for public health authorities and globally as a part of the warning system of climate change effects in Russia.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:sh-52934 |
Date | January 2023 |
Creators | Leonov, Vadim |
Publisher | Södertörns högskola, Institutionen för naturvetenskap, miljö och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds