L'augmentation des performances des circuits intégrés s'est effectué durant les trentes dernières années par la miniaturisation du composant clé à savoir le transistor MOSFET. Cette augmentation de la densité d'intégration se heurte aujourd'hui à plusieurs verrous, notamment celui de la puissance consommée qui devient colossale. Il devient alors nécessaire de travailler sur de nouveaux composants, les transistors à effet tunnel, où les porteurs sont injectés par effet tunnel bande à bande permettant de limiter considérablement la puissance consommée en statique. Les nanofils semiconducteurs sont de bons candidats pour être intégrés comme canaux de ces nouveaux composants de part la possibilité de moduler leur gap et leur conductivité au cours de la croissance. Dans ce contexte, cette thèse traite de la croissance d'hétérostructures axiales Si/Si1-xGex élaborés par croissance VLS par RP-CVD. Tout d'abord, nous identifions les conditions de croissance pour réaliser des interface Si/Si1-xGex et Si1-xGex/Si abruptes. Les deux heterointerfaces sont toujours asymétrique quelle que soit la concentration en Ge ou le diamètre des nanofils ou des conditions de croissance. Deuxièmement, nous étudions les problématiques impliquées par l'ajout d'atomes dopants. Nous discutons de l'influence des paramètres de croissance (le rapport flux de gaz (Si / Ge), et la pression partielle de dopants) sur la morphologie des nanofils et la concentration de porteurs. Grâce à cette étude, nous avons été capable de faire croitre des hétérojonctions P-I-N. Troisièmement, nous présentons une technique basée sur la microscopie à sonde locale pour caractériser les hétérojonctions. / After more than 30 years of successful scaling of MOSFET for increasing the performance and packing density, several limitations to further performance enhancements are now arising, power dissipation is one of the most important one. As scaling continues, there is a need to develop alternative devices with subthreshold slope below 60 mV/decade. In particular, tunnel field effect transistors, where the carriers are injected by quantum band to band tunneling mechanism can be promising candidate for low-power design. But, such devices require the implementation of peculiar architectures like axial heterostructured nanowires with abrupt interface. Using Au catalyzed vapor-liquid-solid synthesis of nanowires, reservoir effect restrains the formation of sharp junctions. In this context, this thesis addresses the growth of axial Si and Si1-xGex heterostructured nanowire with controlled interfacial abruptness and controlled doping using Au catalyzed VLS growth by RP-CVD. Firstly, we identify the growth conditions to realize sharp Si/Si1-xGex and Si1-xGex/Si interfacial abruptness. The two heterointerfaces are always asymmetric irrespective of the Ge concentration or nanowire diameter or growth conditions. Secondly, we study the problematics involved by the addition of dopant atoms and focus on the different approaches to realize taper free NWs. We discuss the influence of growth parameters (gas fluxes (Si or Ge), dopant ratio and pressure) on NW morphology and carrier concentration. With our growth process, we could successfully grow p-I, n-I, p-n, p-i-n type junctions in NWs. Thirdly, we present scanning probe microscopy to be a potential tool to delineate doped and hetero junctions in these as-grown nanowires. Finally, we will integrate the p-i-n junction in the NW in omega gate configuration.
Identifer | oai:union.ndltd.org:theses.fr/2014GRENT045 |
Date | 25 September 2014 |
Creators | Periwal, Priyanka |
Contributors | Grenoble, Baron, Thierry |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds