• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation multi-échelle de l'auto-assemblage de nanostructures sur surfaces / Multi-scale modelling of nanostructures self-assembly on surfaces

Copie, Guillaume 11 December 2014 (has links)
Le développement des méthodes de simulations numériques a permis de modéliser des systèmes physiques de plus en plus complexes et de les étudier à des échelles de taille et de temps importantes en appliquant une démarche multi-échelle.Ainsi, dans le cadre de cette thèse, un premier travail a regardé l’étude de l’auto-organisation de trois types de molécules organiques aromatiques sur une surface semi-conductrice à l’aide de différents outils numériques. Dynamique moléculaire empirique, métadynamique, et simulations de type Monte-Carlo ont été judicieusement combinées pour permettre l’étude multi-échelle de ces systèmes permettant ainsi d’explorer l’importance des interactions non-covalentes inter- moléculaires et molécule-surface, dans la structure et stabilité des réseaux 2 dimensions. A noter que, pour l‘une d’entre elles un comportement cinétique a également pu être mis en évidence, pouvant conduire à la coexistence de phases de symétries différentes sur la surface. Dans tous les cas, la comparaison avec les résultats expérimentaux est excellente.Dans une deuxième partie de ces travaux, l’étude du comportement de couches denses de molécules chimisorbées à l’interface entre des nanoparticules d’Au auto-assemblées sur surface a été abordée. Deux types de molécules ont été étudiés. Pour la première, un comportement différent de la jonction moléculaire, suivant la configuration des molécules (cis ou trans), a pu être mis en évidence, permettant de proposer des explications microscopiques pour la réponse électronique des jonctions entre nanoparticules auto-assemblées, utilisées dans des dispositifs d’électronique moléculaire. Pour la seconde molécule, nous avons pu étudier le comportement des couches moléculaires à l’interface entre couches de nano-particules, quand celles-ci sont soumises à une contrainte mécanique de type compression. Un module de Young efficace pour ces couches moléculaires a pu être estimé. / The development of computer simulation methods allows to model physical systems of ever growing complexity, and to study their behavior over unprecedentedly large scales of time and length, by applying a multi-scale strategy.In the framework of this thesis, we firstly studied the self-organization of three dif- ferent kinds of organic aromatic molecules (THBB, TBBB, TCNBB) on a boron-doped semi-conductor surface, (Si:B(111)), by means of different numerical simulation methods. Empirical molecular dynamics, metadynamics and Monte Carlo simulations were adequa- tely combined, in order to explore the multi-scale behavior of such systems, allowing to elucidate the role of weak intermolecular and molecule-surface interactions, in the struc- ture and stability of the resulting bi-dimensional supramolecular lattices. In particular, for the TCNBB molecule a kinetic pathway has been demonstrated, which may lead to the coexistence of phases with different symmetry on the surface. In all cases, an excellent agreement with experiments was demonstrated.In a second part of this thesis, we studied the behavior of dense layers of molecules chemisorbed at the surface of nanometer-sized Au particles, in driving their self-assembly. Two kind of molecules, AzBT and MUDA, were studied. For the first one, the response of the junctions formed between the adjoining Au nanoparticles has been shown to de- pend on the conformation of the molecules, in their cis or trans form. This allowed to propose microscopic explanations for the experimentally observed electronic behavior of the junctions. For the second molecule, we studied the mechanical response of the self- assembled Au nanoparticle layers subject to a compressive load, leading to an estimate of the effective Young’s modulus of the nanostructure.
2

La réinjection optique dans un laser VCSEL en tant que la détection et l'asservissement de distance en microscopie à sonde locale

Barret, Romain 31 March 2008 (has links) (PDF)
Cette thèse se situe dans le contexte d'un projet d'intégration sur puce de microscopes à sonde locale : systèmes parallèles de nano-lecture-écriture optique comprenant des micro-leviers équipés de diodes laser, et montés sur des systèmes MEMS assurant les fonctions de balayage spatial. On utilisera des diodes laser à cavité verticale émettant par la surface (VCSEL). En quelques mots, un VCSEL est un laser à semi-conducteur, pompé électriquement, formé de miroirs de Bragg délimitant une cavité optique dans laquelle se trouvent des puits quantiques. Les VCSEL ont l'avantage d'avoir un faible courant seuil, une faible divergence et une grande capacité d'intégration surfacique. On exploitera la sensibilité des VCSEL à la réinjection optique. Le travail de thèse proprement dit porte sur l'étude de la réinjection optique dans un VCSEL sur le plan expérimental et théorique. La réinjection optique dans un VCSEL correspond à réintroduire une partie ou la totalité de la lumière émise par le VCSEL à l'intérieur de la cavité du VCSEL. Pour ce faire, on ajoute un miroir externe de façon à rétroréfléchir l'émission vers la face émettrice. On forme, entre la face émettrice du laser et le miroir externe, une cavité externe. La réinjection optique a été étudiée pour la première fois par R. Lang et K. Kobayashi dans des lasers à émission par la tranche en 1980. Depuis plusieurs travaux portant sur des VCSEL ont montré que la réinjection optique perturbe plusieurs caractéristiques de ces lasers : caractéristiques spectrales, courant seuil, efficacité quantique différentielle, puissance optique, tension, polarisation. Les effets de la réinjection optique sont influencés par la longueur (distance entre la face émettrice et le miroir externe) de la cavité externe d'une manière périodique, la période est la demi-longueur de l'onde laser du VCSEL. Ces effets sont également modifiés par la réflectivité du miroir externe. Ce travail de thèse se situe dans le prolongement d'une première thèse faite par D. Heinis et soutenue en octobre 2005. Il a notamment réalisé un microscope SNOM semi-massif fibré utilisant un asservissement à force de cisaillement, la sonde est une fibre optique étirée. L'information optique est obtenue à partir de la variation de la puissance optique induite par la réinjection optique dans un VCSEL émettant dans le proche IR. A partir de ce microscope SNOM, un montage de microscope à sonde optique et à asservissement optique est proposé. On utilise l'effet de la réinjection optique sur la puissance optique et la dépendance de cet effet avec la longueur de la cavité externe.
3

High spatial resolution investigation of spin crossover phenomena using scanning probe microscopies / Etudes à hautes résolutions spatiales du phénomène de conversion de spin par microscopies à sonde locale

Hernandez Gonzalez, Edna Magdalena 21 July 2015 (has links)
Récemment, un grand nombre d'objets de taille nanométrique, incluant les nanoparticules, les films minces, les dispositifs nanostructurés, présentant des phénomènes de commutation impliquant différents états de spin, ont été développé pour des applications dans le domaine des capteurs et des systèmes nanophotoniques, nanoélectroniques et nanomécaniques. En effet, Ces nanomatériaux à conversion de spin présentent une dépendance en taille des propriétés physico-chimiques très intéressantes. Même si l'origine du phénomène de conversion de spin est purement moléculaire, le comportement macroscopique de ces systèmes à l'état solide est fortement influencé par les interactions intermoléculaires élastiques. On s'attend donc à ce que les propriétés coopératives et, de manière plus générale, le diagramme de phase, soient très dépendantes de la taille du système. Au-delà de la stabilité des phases, les cinétiques de transformation dépendent également de la taille du système. Dans ce contexte, des interactions élastiques fortes conduisent dans de nombreux cas à des transitions de type premier ordre accompagnées par une séparation de phase hétérogène. Les détails du mécanisme de la dynamique spatio-temporelle associée à la transition de spin restent encore inexplorés. L'ensemble de ces phénomènes observés dans les matériaux à transition de spin demande des méthodes de caractérisation possédant une capacité d'imagerie d'une grande résolution spatiale afin d'aller au-delà des techniques de microscopie optique en champ lointain habituellement employées. Par conséquence, l'objectif global de cette thèse de doctorat est de développer de nouvelles approches qui permettent de détecter le phénomène de transition de spin avec une résolution spatiale nanométrique. Pour observer la transition de spin thermique dans les films minces, nous avons utilisé pour la première fois la microscopie optique en champ proche (NSOM en Anglais) ainsi que la microscopie à force atomique (AFM en Anglais) en conjonction avec des dispositifs originaux de chauffage à l'échelle du nanomètre, conçus à partir de nanofils et fonctionnant par effet Joule. En utilisant ces techniques, le changement de l'état de spin a pu être observé avec une résolution sub-longueur d'onde au travers des changements des propriétés mécanique et optique des matériaux. Le NSOM en mode illumination, utilisé soit en luminescence ou en mode réflexion fournit un signal utile pour la détection du changement d'état de spin mais ne permet en revanche qu'une quantification limitée du phénomène en raison de l'instabilité des échantillons (photoblanchiment, ...) . D'un autre côté, les différents modes mécaniques AFM, incluant la spectroscopie à force rapide et l'analyse multifréquentielle, ont permis des mesures quantitatives et reproductibles avec une résolution nanométrique. En particulier, nous avons été capable de mesurer pour la première fois l'augmentation du module d'Young (env. 25-30%) observée lors de la transition de l'état Haut Spin vers l'état Bas Spin et nous avons utilisé cette propriété pour réaliser une imagerie quantitative de la transition de spin. Des mesures AFM ont été faites sur des monocristaux à transition de spin. Nous avons montré que les transferts thermiques entre la sonde et l'échantillon peuvent être utilisés pour manipuler la nucléation et la propagation des phases Haut et Bas Spin dans des cristaux. Par ailleurs, ces interactions sonde-échantillon rendent difficiles l'imagerie AFM de ces phénomènes. Néanmoins, les changements d'ordre topographique de la surface au cours de la transition de spin peuvent être observés et discutés en conjonction avec les résultats de spectroscopie Raman (cartographie) et microscopie optique en champ lointain. L'ensemble de ces résultats ouvre de nouvelles possibilités d'étude et de contrôle/manipulation de ces objets bistables à l'échelle du nanomètre / Recently a variety of nanoscale objects, including nanoparticles, thin films and nanometric assemblies, exhibiting molecular spin-state switching phenomena have been developed for applications in sensors, nanophotonic, nanoelectronic and nanomechanical systems. These spin crossover nanomaterials have been also reported to exhibit interesting size-dependent properties. Indeed, even if the origin of the spin crossover phenomenon is purely molecular, the macroscopic behavior of these systems in the solid state is strongly influenced by elastic interactions between the molecules. These cooperative properties and, in general, the phase diagram are expected to depend strongly on the size of the material. Beyond the phase stability, the transformation kinetics is likely to display also size dependence. Indeed, the strong elastic interactions in these materials lead, in many cases, to first-order phase transitions and phase separation phenomena. Details of the associated spatio-temporal dynamics of spin crossover systems remain largely unexplored. All these size dependent and spatially heterogeneous phenomena in spin crossover materials call for appropriate characterization methods with high spatial resolution imaging capability, but to date only far-field optical microscopy has been used to this aim. Hence, the overall objective of this PHD thesis was to develop new approaches allowing to trigger and detect the spin crossover phenomenon with nanometric spatial resolution. For the detection of the thermally induced spin crossover in thin films, we used for the first time Near-Field Scanning Optical Microscopy (NSOM) and Atomic Force Microscopy (AFM) in conjunction with an original nano-heater device, based on Joule-heated metallic nanowires. Using these techniques the spin-state change in the films was inferred with sub-wavelength resolution through the associated optical and mechanical property changes of the material. Apertured NSOM used either in luminescence or reflectivity mode provided useful signal for detecting the spin-state switching phenomena, but rather limited quantification was possible due to sample stability issues (photobleaching, etc). On the other hand, AFM mechanical modes, including fast force spectroscopy and multifrequency analysis, allowed for quantitative and well-reproducible measurements with nanometric resolution. In particular, we have measured for the first time the increase of the Young's modulus (ca. 25-30 %) when going from the high spin to the low spin state and used this property for quantitative imaging of the spin transition. AFM measurements were also performed on spin crossover single crystals. We have shown that probe-sample thermal interactions can be used to manipulate the nucleation and propagation of the high spin and low spin phases in the crystals. On the other hand, these interactions make for difficulties for the AFM imaging of these phenomena. Nevertheless changes of the surface topography during the spin transition can be observed and discussed in conjunction with far-field optical microscopy and Raman spectroscopy data. The ensemble of these results open up new possibilities for the investigation and manipulation of these bistable objects at the nanoscale.
4

VLS growth and characterization of axial Si-SiGe heterostructured nanowire for tunnel field effect transistors / VLS croissance et caractérisation de axiale Si/SiGe heterostructured nanofils pour la réalisation de tunnel FET

Periwal, Priyanka 25 September 2014 (has links)
L'augmentation des performances des circuits intégrés s'est effectué durant les trentes dernières années par la miniaturisation du composant clé à savoir le transistor MOSFET. Cette augmentation de la densité d'intégration se heurte aujourd'hui à plusieurs verrous, notamment celui de la puissance consommée qui devient colossale. Il devient alors nécessaire de travailler sur de nouveaux composants, les transistors à effet tunnel, où les porteurs sont injectés par effet tunnel bande à bande permettant de limiter considérablement la puissance consommée en statique. Les nanofils semiconducteurs sont de bons candidats pour être intégrés comme canaux de ces nouveaux composants de part la possibilité de moduler leur gap et leur conductivité au cours de la croissance. Dans ce contexte, cette thèse traite de la croissance d'hétérostructures axiales Si/Si1-xGex élaborés par croissance VLS par RP-CVD. Tout d'abord, nous identifions les conditions de croissance pour réaliser des interface Si/Si1-xGex et Si1-xGex/Si abruptes. Les deux heterointerfaces sont toujours asymétrique quelle que soit la concentration en Ge ou le diamètre des nanofils ou des conditions de croissance. Deuxièmement, nous étudions les problématiques impliquées par l'ajout d'atomes dopants. Nous discutons de l'influence des paramètres de croissance (le rapport flux de gaz (Si / Ge), et la pression partielle de dopants) sur la morphologie des nanofils et la concentration de porteurs. Grâce à cette étude, nous avons été capable de faire croitre des hétérojonctions P-I-N. Troisièmement, nous présentons une technique basée sur la microscopie à sonde locale pour caractériser les hétérojonctions. / After more than 30 years of successful scaling of MOSFET for increasing the performance and packing density, several limitations to further performance enhancements are now arising, power dissipation is one of the most important one. As scaling continues, there is a need to develop alternative devices with subthreshold slope below 60 mV/decade. In particular, tunnel field effect transistors, where the carriers are injected by quantum band to band tunneling mechanism can be promising candidate for low-power design. But, such devices require the implementation of peculiar architectures like axial heterostructured nanowires with abrupt interface. Using Au catalyzed vapor-liquid-solid synthesis of nanowires, reservoir effect restrains the formation of sharp junctions. In this context, this thesis addresses the growth of axial Si and Si1-xGex heterostructured nanowire with controlled interfacial abruptness and controlled doping using Au catalyzed VLS growth by RP-CVD. Firstly, we identify the growth conditions to realize sharp Si/Si1-xGex and Si1-xGex/Si interfacial abruptness. The two heterointerfaces are always asymmetric irrespective of the Ge concentration or nanowire diameter or growth conditions. Secondly, we study the problematics involved by the addition of dopant atoms and focus on the different approaches to realize taper free NWs. We discuss the influence of growth parameters (gas fluxes (Si or Ge), dopant ratio and pressure) on NW morphology and carrier concentration. With our growth process, we could successfully grow p-I, n-I, p-n, p-i-n type junctions in NWs. Thirdly, we present scanning probe microscopy to be a potential tool to delineate doped and hetero junctions in these as-grown nanowires. Finally, we will integrate the p-i-n junction in the NW in omega gate configuration.
5

Un microscope de champ magnétique basé sur le défaut azote-lacune du diamant : réalisation et application à l'étude de couches ferromagnétiques ultraminces / A magnetic field microscope based on the nitrogen-vacancy defect in diamond : realisation and application to the study of ultrathin ferromagnets

Tetienne, Jean-Philippe 13 November 2014 (has links)
La capacité à cartographier le champ magnétique à l'échelle nanométrique serait un atout crucial pour étudier les propriétés magnétiques des solides ainsi que certains phénomènes de transport, mais aussi pour des études fondamentales en biologie. Cette thèse porte sur la réalisation d'un microscope de champ magnétique d'un genre nouveau, qui promet une résolution spatiale de quelques nanomètres, une sensibilité de l'ordre du nanotesla, et fonctionne aux conditions ambiantes. Ce microscope est basé sur le défaut azote-lacune du diamant, dont les propriétés quantiques peuvent être exploitées pour en faire un magnétomètre ultrasensible de taille atomique. Dans un premier temps, nous présenterons le fonctionnement et la réalisation du microscope à défaut azote-lacune, qui consiste essentiellement en un microscope à force atomique sur la pointe duquel un nanocristal de diamant est attaché. Nous testerons le microscope en imageant le champ de fuite généré par un cœur de vortex dans un microdisque ferromagnétique. Dans un second temps, nous appliquerons le microscope à l'étude de couches ferromagnétiques ultraminces. Ces systèmes présentent un intérêt à la fois fondamental, les effets d'interfaces restant encore largement inexplorés à ce jour, et technologique, puisqu'ils sont à la base de propositions pour la réalisation de nouvelles mémoires magnétiques à basse consommation d'énergie. Nous étudierons d'abord la nature des parois de domaines dans ces couches ultraminces, ce qui nous permettra de révéler l'existence d'une interaction Dzyaloshinskii-Moriya d'origine interfaciale dans certains échantillons. Nous étudierons ensuite les sauts nanométriques d'une paroi de domaine induits par l'agitation thermique. Nous démontrerons en particulier le contrôle de ces sauts par un laser, ce qui nous permettra de visualiser et explorer le paysage énergétique de la paroi. / The ability to map the magnetic field at the nanometer scale would be a crucial advance to study the magnetic properties of solids as well as some transport phenomena, but also for fundamental studies in biology. This thesis deals with the realisation of a magnetic field microscope of a new kind, which promises a spatial resolution down to a few nanometres, a sensitivity of the order of a few nanoteslas, and operates under ambient conditions. This microscope is based on the nitrogen-vacancy defect in diamond, whose quantum properties can be harnessed to make an ultrasensitive, atomic-size magnetometre. In the first part, we will present the basic principles and the realisation of the nitrogen-vacancy defect microscope, which consists essentially in an atomic force microscope on the tip of which a diamond nanocrystal is grafted. We will test the microscope by imaging the stray field generated by a vortex core in a ferromagnetic microdisk. In the second part, we will apply the microscope to the study of ultrathin ferromagnets. These systems are interesting both from the physical point of view, as interface effects have been little explored so far, and for technology, as they are the cornerstone of several proposals for realising novel magnetic memory devices with low energy consumption. We will first study the nature of domain walls in these ultrathin ferromagnets, which will enable us to reveal the existence of an interface-related Dzyaloshinskii-Moriya interaction in some samples. Next, we will study the nanometric jumps of a domain wall induced by thermal fluctuations. In particular, we will demonstrate control over these jumps using a laser, which will allow us to visualise and explore the wall's energy landscape.
6

Caractérisation mécanique des matériaux élastiques à l'échelle locale par microscopie à pointe vibrante : Approche multimodale et mesure de champs / Mechanical characterization of elastic materials at local scale using vibrating tip acoustic microscopy : Multimodal approach and full-field measurement

Travaillot, Thomas 14 May 2014 (has links)
Ces travaux de thèse proposent une amélioration du Scanning Microdeformation Microscope (SMM),un microscope à sonde locale, pour la caractérisation mécanique élastique des matériaux à l’échellelocale. Il est montré qu’en utilisant n > 2 modes de résonance du SMM, il est possible de découplerles mesures du module de Young et du coefficient de Poisson d’un matériau isotrope.Une étude des modes du résonateur a permis d’enrichir son modèle afin qu’il puisse modélisern > 2 modes. Des procédures ont été développées pour identifier les paramètres de ce modèle etles constantes élastiques des matériaux à partir de n > 2 fréquences de résonance. Enfin, ces procéduresont été appliquées à des exemples de caractérisation à l’échelle locale afin de valider laméthode et d’en exhiber les possibilités et les limites.Pour gagner en robustesse et se diriger vers la caractérisation des matériaux anisotropes, un systèmed’imagerie interférométrique en lumière polarisée, permettant la mesure du champ de rotationde surfaces réfléchissantes dans une direction particulière, a été développé pour être intégré auSMM. Son prisme biréfringent à gradient uniaxial d’indice lui confère sa sensibilité à la rotation. Cesystème est capable de mesurer un champ de rotation localisé comme c’est le cas au voisinage dela pointe du SMM. Il a aussi montré son intérêt dans les cas où l’effet d’échelle rend particulièrementintéressante la mesure de la rotation. / This work proposes an improvement of the Scanning Microdeformation Microscope (SMM), a scanningprobe microscope, for the mechanical elastic characterization of materials at local scale. It demonstratesthat using n > 2 SMM resonance frequencies allows to decouple Young’s modulus andPoisson’s ratio values for an isotropic material.The mechanical description of the resonator has been enriched in order to allow for an accuratemodeling over a wide frequency range. Procedures have been developed to identify the modellingparameters and the elastic constants of the materials from n > 2 resonant frequencies. Finally, theseprocedures have been applied to the characterization of various materials at local scale in order tovalidate the method and to present possibilities and limits.To improve robustness and move towards the characterization of anisotropic materials, a polarizedlightimaging interferometer was developed to measure the rotation field of reflecting surfaces in aparticular direction. The sensitivity to the rotation originates from a homemade birefringent prism withuniaxial gradient of refractive index. This system is able to measure a localized rotation field as it isinduced in the vicinity of the tip of the SMM. Its interest is also demonstrated in cases in which scaleeffects make the rotation measurement preferable to the out-of-plane displacement measurement.
7

Contrôle de l'orientation de molécules pour la réalisation de nanosources de lumière / Control of the orientation of molecules towards the realization of nanosources of light

Hsia, Patrick 25 November 2015 (has links)
Ce travail concerne le développement d’un nouveau type de microscopie optique en champ proche (SNOM) basé sur la mise en œuvre de sondes dite actives qui utilisent le signal de génération de seconde harmonique (SHG) d’un petit nombre de molécules orientées. L’orientation de ces molécules est obtenue par l’application d’un champ électrique statique dans une jonction constituée d’une pointe métallique effilée placée à proximité d’un substrat conducteur et immergée dans une solution de molécules dipolaires non-linéaires. L’excitation laser de ces molécules localement orientées permet d’obtenir une polarisation non-lineaire à fréquence double qui constitue une nanosource de lumière intrinsèquement localisée et pouvant interagir avec le champ proche du substrat. Nous nous sommes intéressés à l’imagerie de nano-objets lithographiés par cette technique de SNOM-SHG. Nous avons pu démontrer la possibilité d’obtenir une résolution de l’ordre de 200 nm, soit une résolution meilleure d’un facteur 2 par rapport à la limite de diffraction.Nous avons ensuite étudié les moyens d’optimiser les performances de ce nouveau type de sondes SNOM-SHG. Une voie consiste à exploiter les propriétés d’antenne optique de pointes métalliques effilées, qui peuvent être le siège d’effets d’exaltation du champ électromagnétique résultant de la singularité géométrique de ces objets (extrémité effilée) ou de l’excitation de résonances plasmons. Afin de pouvoir quantifier ces effets, nous avons entrepris la caractérisation, par luminescence à 2 photons (TPL), de nanofils d’or considérés comme objets de référence pour mimer une pointe. Des fils lithographiés ainsi que des fils issus de chimie colloïdale ont été étudiés de façon à mieux comprendre à la fois l’influence de la forme et de la cristallinité des objets sur les exaltations de champ. Des études simultanées de la géométrie et des propriétés optiques d'un nanofil unique ont été menées au moyen d'un microscope optique inversé associé à une excitation laser et couplé à un microscope à force atomique (AFM) dont la pointe est préalablement réglée pour coïncider avec le spot laser. En balayant l’échantillon, nous pouvons directement confronter l’image topographique de l’objet à la cartographie de points chauds enregistrés à sa surface, le signal de TPL étant directement corrélé à la densité locale d’états électromagnétiques. Nous avons pu montrer que les fils lithographiés et les fils colloïdaux présentaient des facteurs d’exaltation locale de champ différents, la cristallinité des objets pouvant aussi être révélée que via l’analyse spectrale du signal de TPL émis. Enfin, un dernier volet important de mon travail a consisté à faire évoluer le banc expérimental précédemment développé au laboratoire de façon à pouvoir réaliser simultanément des caractérisations de type SNOM-SHG et des caractérisations topographiques. Dans ce but, nous avons travaillé à l’intégration d’une tête AFM diapason sur notre banc de microscopie non-linéaire. Au-delà des aspects électroniques liés à l’optimisation du fonctionnement de ce diapason, le couplage du faisceau laser dans le microscope a également été entièrement reconfiguré. / This work deals with the development of a new kind of scanning near-field optical microscopy (SNOM) based on the realization of so-called active probes taking advantage of the second harmonic generation (SHG) signal coming from a few oriented molecules. The orientation of these molecules is obtained by applying a static electric field in a junction made of a sharp metallic tip placed close to a conductive substrate and immersed in a solution containing dipolar non-linear molecules. A second order nonlinear polarization is obtained from these locally oriented molecules following their excitation with a laser beam finally leading to a nanosource of light intrinsically localized and able to interact with the near-field of the substrate.We have investigated this SNOM-SHG technique to image nano-objects made by e-beam lithography. We were able to demonstrate that a resolution of about 100 nm could be reached, which appears better (of a factor2) than the diffraction limit.We have then been focusing on the way to improve the capabilities of this new type of SNOM-SHG probes. One approach consists in taking advantage of the optical antenna effects that can occur at the end of sharp tips, where the electromagnetic field can be enhanced due to geometrical effects (sharp extremities) or due to the excitation of plasmon resonances. In order to quantify these field enhancements, we have carried out the characterization of gold nanowires using two-photon luminescence (TPL) ; considering these wires as reference objects that can mimic tips. Nanowires made by e-beam lithography and nanowires synthesized by colloidal chemistry have both been studied in order to have a better understanding of the influence of the shape and the crystallinity on the field enhancements. Simultaneous analysis of the geometry and the optical properties of a single nanowire has been carried out using an inverted microscope associated to a laser excitation and coupled to an atomic force microscopy (AFM) which tip is previously aligned with the laser spot. When scanning the sample, we can directly correlate the topographic image of the object to the mapping of the hotspots recorded on its surface, the TPL signal being directly linked to the electromagnetic local density of states. We were able to evidence that both nanowires made by e-beam lithography or synthesized by colloidal chemistry exhibit different field enhancement factors, the crystallinity of the objects being also revealed following the spectral analysis of the emitted TPL signal.Finally, a last important part of my work has dealt with the evolution of the experimental setup previously developed in the laboratory in order to be able to achieve simultaneously SNOM-SHG type and topographic characterizations. We have therefore been working on the integration of an AFM tuning fork head to our nonlinear optical bench. Above the electronic aspects related on the optimization of the tuning fork implementation, the coupling of the laser beam in the microscope has also been reconfigured.
8

Carrier profiling of ZnO nanowire structures by scanning capacitance microscopy and scanning spreading resistance microscopy / Profilage porteur de structures de nanofils ZnO par microscopie à capacité de balayage et microscopie à dispersion

Wang, Lin 28 April 2016 (has links)
Ce travail de thèse porte sur l'application des techniques Scanning Capacitance Microscopy (SCM) et Scanning Spreading Resistance Microscopy (SSRM) pour la caractérisation électrique de nanofils de ZnO avec l'objectif d'en déterminer le dopage par profilage des porteurs libres suite à des essais de dopage de type p. Afin de pouvoir utiliser un référentiel planaire nécessaire à ces mesures par sonde locale, un procédé de remplissage par dip-coating et de polissage a été spécialement développé sur des champs de nanofils quasi-verticaux. De plus, dans le but de parvenir à un étalonnage des mesures SCM et SSRM, nous avons conçu et fait fabriquer des échantillons étalons de dopage de type n, contenant des niveaux de Ga en escalier de densité variable de 2×10^17 à 3×10^20 cm^-3. Les mesures sur des coupes transversales de ces deux de structures multicouches ont permis, pour la première fois sur ZnO d'établir un étalonnage des mesures SCM et SSRM et de déterminer le dopage intrinsèque électriquement actif de couches 2D nanométriques, résultat difficilement atteignable par d'autres techniques d'analyse. Des résultats inattendus de concentration résiduelle de porteur de l'ordre de 2×10^18 et 3×10^18 cm^-3 ont été trouvés sur les nanofils de ZnO crus par MOCVD et par CBD respectivement. Outre la caractérisation électrique microscopique des nanofils par SCM et SSRM, des techniques macroscopiques classiques ont été utilisées pour caractériser des assemblées importantes de nanofils de ZnO. L'origine de la difference entre les résultats de deux genres de technique a été discutée. Nous avons aussi étudié les effets des dopages ex-situ par diffusion du phosphore (procédé SOD) et des dopages in situ par incorporation d'antimoine (Sb) pendant la croissance MOCVD. Les résultats majeurs sont obtenus pour l'antimoine, en utilisant des couches ZnO: Sb 2D et des nanofils cœur-coquille ZnO/ZnO: Sb, ou l'hypothèse d'une compensation partielle du dopage n résiduel par un centre accepteur créé par le dopage Sb semble pouvoir être établie raisonnablement. / Based on atomic force microscope (AFM), scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) have demonstrated high efficiency for two dimensional (2D) electrical characterizations of Si semiconductors at nanoscale and then have been extensively employed in Si-based structures/devices before being extended to the study of some other semiconductor materials. However, ZnO, a representative of the third generation semiconductor material, being considered a promising candidate for future devices in many areas, especially in opto-electronic area, has rarely been addressed. Recently, extensive research interests have been attracted by ZnO NWs for future devices such as LED, UV laser and sensor. Therefore, a good understanding of electrical properties of the NWs is in need. In this context, this thesis work is dedicated to the 2D electrical characterization of ZnO NWs with the focus of carrier profiling on this kind of nanostructure in the effort of their p-type doping. For this purpose, a planarization process has been developed for the NWs structure in order to obtain an appropriate sample surface and perform SCM/SSRM measurements on the top of the NWs. For quantitative analysis, Ga doped ZnO multilayer staircase structures were developed serving as calibration samples. Finally, residual carrier concentrations inside the CBD and MOCVD grown ZnO NWs are determined to be around 3×10^18 cm^-3 and 2×10^18 cm^-3, respectively. The results from SCM/SSRM characterization have been compared with that from macroscopic C-V measurements on collective ZnO NWs and the differences are discussed. In addition to carrier profiling on NWs structure, applications of SCM/SSRM on some other ZnO-based nanostructures are also investigated including ZnO:Sb films, ZnO/ZnO:Sb core-shell NWs structure, ZnO/ZnMgO core-multishell coaxial heterostructures.

Page generated in 0.5492 seconds