• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Croissance par voie chimique et propriétés de transport électronique de nanofils d'or

Loubat, Anais 31 March 2014 (has links) (PDF)
Les nanofils d'or ultrafins sont des objets fascinants présentant une morphologie quasi 1D, leur diamètre n'excédant par 2 nm pour une longueur micrométrique. Les quelques 30 atomes qui composent la section de ses fils sont principalement des atomes de surface, permettant d'envisager des applications de type capteurs. De plus, l'anisotropie de forme unique pourrait permettre un confinement électronique unidimensionnel, menant à de nouvelles propriétés physiques. Nous avons réalisé une étude fondamentale de la synthèse et réaliser une première étude de transport sur une assemblée de nanofils.La première partie du manuscrit, divisée en quatre chapitres, consiste en l'étude du mécanisme de croissance de ces nanofils ultrafins. Suite à une analyse détaillée des modèles proposés, nous introduisons la technique de diffusion des rayons X aux petits angles (SAXS) utilisée pour nos études mécanistiques. Le chapitre 3 est consacré à l'étude de la synthèse de nanofils en milieu confiné. Contrairement aux postulats précédents, un suivi cinétique in-situ par SAXS nous a permis de montrer que la phase lamellaire n'intervenait pas dans la croissance des objets, voir même qu'elle était détrimentaire à leur formation. Le dernier chapitre présente la synthèse en milieu isotrope. Un mécanisme de croissance efficace où les sphères jouent le rôle de germe est avancé. L'auto-organisation des fils en solution suivant une phase hexagonale appuie l'hypothèse d'une stabilisation des fils par une double couche d'oleylamine et de chlorure d'ammonium. Un mécanisme de croissance analogue aux mécanismes proposés pour les bâtonnets d'or dans l'eau est donc proposé.La deuxième partie du manuscrit, divisée en trois chapitres, consiste en une caractérisation des propriétés de transport électronique dans ces nanofils d'or ultrafins. Nous dressons, dans un premier temps, un bilan des différents régimes de transport observés au sein de nano-objets de basse dimensionnalité. Suite aux étapes indispensables de dépôt et de connexion, le troisième chapitre présente les premières mesures de transport effectuées sur des assemblées de nanofils d'or faiblement couplées. Nous mettons ainsi en évidence, grâce à une étude sur une large gamme de températures et de tensions de polarisation, un transport de charge coopératif dans le cadre d'un régime de blocage de Coulomb.
2

Contrôle de l'orientation de molécules pour la réalisation de nanosources de lumière / Control of the orientation of molecules towards the realization of nanosources of light

Hsia, Patrick 25 November 2015 (has links)
Ce travail concerne le développement d’un nouveau type de microscopie optique en champ proche (SNOM) basé sur la mise en œuvre de sondes dite actives qui utilisent le signal de génération de seconde harmonique (SHG) d’un petit nombre de molécules orientées. L’orientation de ces molécules est obtenue par l’application d’un champ électrique statique dans une jonction constituée d’une pointe métallique effilée placée à proximité d’un substrat conducteur et immergée dans une solution de molécules dipolaires non-linéaires. L’excitation laser de ces molécules localement orientées permet d’obtenir une polarisation non-lineaire à fréquence double qui constitue une nanosource de lumière intrinsèquement localisée et pouvant interagir avec le champ proche du substrat. Nous nous sommes intéressés à l’imagerie de nano-objets lithographiés par cette technique de SNOM-SHG. Nous avons pu démontrer la possibilité d’obtenir une résolution de l’ordre de 200 nm, soit une résolution meilleure d’un facteur 2 par rapport à la limite de diffraction.Nous avons ensuite étudié les moyens d’optimiser les performances de ce nouveau type de sondes SNOM-SHG. Une voie consiste à exploiter les propriétés d’antenne optique de pointes métalliques effilées, qui peuvent être le siège d’effets d’exaltation du champ électromagnétique résultant de la singularité géométrique de ces objets (extrémité effilée) ou de l’excitation de résonances plasmons. Afin de pouvoir quantifier ces effets, nous avons entrepris la caractérisation, par luminescence à 2 photons (TPL), de nanofils d’or considérés comme objets de référence pour mimer une pointe. Des fils lithographiés ainsi que des fils issus de chimie colloïdale ont été étudiés de façon à mieux comprendre à la fois l’influence de la forme et de la cristallinité des objets sur les exaltations de champ. Des études simultanées de la géométrie et des propriétés optiques d'un nanofil unique ont été menées au moyen d'un microscope optique inversé associé à une excitation laser et couplé à un microscope à force atomique (AFM) dont la pointe est préalablement réglée pour coïncider avec le spot laser. En balayant l’échantillon, nous pouvons directement confronter l’image topographique de l’objet à la cartographie de points chauds enregistrés à sa surface, le signal de TPL étant directement corrélé à la densité locale d’états électromagnétiques. Nous avons pu montrer que les fils lithographiés et les fils colloïdaux présentaient des facteurs d’exaltation locale de champ différents, la cristallinité des objets pouvant aussi être révélée que via l’analyse spectrale du signal de TPL émis. Enfin, un dernier volet important de mon travail a consisté à faire évoluer le banc expérimental précédemment développé au laboratoire de façon à pouvoir réaliser simultanément des caractérisations de type SNOM-SHG et des caractérisations topographiques. Dans ce but, nous avons travaillé à l’intégration d’une tête AFM diapason sur notre banc de microscopie non-linéaire. Au-delà des aspects électroniques liés à l’optimisation du fonctionnement de ce diapason, le couplage du faisceau laser dans le microscope a également été entièrement reconfiguré. / This work deals with the development of a new kind of scanning near-field optical microscopy (SNOM) based on the realization of so-called active probes taking advantage of the second harmonic generation (SHG) signal coming from a few oriented molecules. The orientation of these molecules is obtained by applying a static electric field in a junction made of a sharp metallic tip placed close to a conductive substrate and immersed in a solution containing dipolar non-linear molecules. A second order nonlinear polarization is obtained from these locally oriented molecules following their excitation with a laser beam finally leading to a nanosource of light intrinsically localized and able to interact with the near-field of the substrate.We have investigated this SNOM-SHG technique to image nano-objects made by e-beam lithography. We were able to demonstrate that a resolution of about 100 nm could be reached, which appears better (of a factor2) than the diffraction limit.We have then been focusing on the way to improve the capabilities of this new type of SNOM-SHG probes. One approach consists in taking advantage of the optical antenna effects that can occur at the end of sharp tips, where the electromagnetic field can be enhanced due to geometrical effects (sharp extremities) or due to the excitation of plasmon resonances. In order to quantify these field enhancements, we have carried out the characterization of gold nanowires using two-photon luminescence (TPL) ; considering these wires as reference objects that can mimic tips. Nanowires made by e-beam lithography and nanowires synthesized by colloidal chemistry have both been studied in order to have a better understanding of the influence of the shape and the crystallinity on the field enhancements. Simultaneous analysis of the geometry and the optical properties of a single nanowire has been carried out using an inverted microscope associated to a laser excitation and coupled to an atomic force microscopy (AFM) which tip is previously aligned with the laser spot. When scanning the sample, we can directly correlate the topographic image of the object to the mapping of the hotspots recorded on its surface, the TPL signal being directly linked to the electromagnetic local density of states. We were able to evidence that both nanowires made by e-beam lithography or synthesized by colloidal chemistry exhibit different field enhancement factors, the crystallinity of the objects being also revealed following the spectral analysis of the emitted TPL signal.Finally, a last important part of my work has dealt with the evolution of the experimental setup previously developed in the laboratory in order to be able to achieve simultaneously SNOM-SHG type and topographic characterizations. We have therefore been working on the integration of an AFM tuning fork head to our nonlinear optical bench. Above the electronic aspects related on the optimization of the tuning fork implementation, the coupling of the laser beam in the microscope has also been reconfigured.
3

Étude des propriétés mécaniques de l'or sous forme de nanofil et de structure nanoporeuse par dynamique moléculaire / Study of the mechanical properties of gold in the form of nanowire and nanoporous structure by molecular dynamics

Guillotte, Maxime 12 November 2019 (has links)
Dans cette thèse nous avons étudié en détail les propriétés mécaniques de l’or sous forme de nanofils et de structures nanoporeuses revêtues ou non de silicium amorphe (a-Si). Ces travaux ont été effectués par dynamique moléculaire. Nous avons dans un premier temps étudié la déformation cyclique de nanofils d’or (NF-Au) et de nanofils cœur-coquille or-silicium amorphe (NF-AuSi). Ces simulations ont montré que le NF-Au est déformé au cours des cycles par deux mécanismes prépondérants : le maclage extensif puis le glissement d’un unique plan atomique. Le cyclage a pour effet d’altérer progressivement la morphologie de la structure en augmentant le nombre et la taille des défauts créés en surface. La déformation cyclique du NF-AuSi montre que le revêtement de a-Si délocalise la plasticité le long de la structure et permet de mieux conserver la morphologie initiale du cœur. Nous avons ensuite développé une méthode originale de génération de l’or nanoporeux. Cette méthode a été validée par la comparaison structurale et mécanique avec des résultats expérimentaux. Puis nous avons étudié la déformation en traction et en compression de différentes structures générées par cette méthode. Nous avons dans les deux cas mis en évidence les mécanismes de déformation des ligaments. En traction, nous avons apporté de nouveaux résultats permettant de mieux comprendre pourquoi l’or nanoporeux est fragile alors que l’or massif est ductile. En particulier, nous avons étudié comment s’opère la fracture en cascade des ligaments par transfert de contrainte entre ceux-ci. En compression nous avons entre autres montré que l’effondrement des pores et la création de joints de grains est responsable de l’augmentation de la contrainte à la transition écoulement-densification. Les simulations de traction et de compression des mêmes structures mais revêtues de silicium amorphe montrent plusieurs résultats intéressants. Par exemple, la résistance des structures est augmentée d’un facteur 2 à 4. De plus, le revêtement a pour effet de délocaliser la plasticité ce qui augmente la ductilité notamment en traction. En compression, la transition écoulement-densification est avancée probablement en raison de la diminution de la taille des pores causée par le revêtement. / In this thesis we have studied in detail the mechanical properties of gold nanowires and nanoporous gold with and without an amorphous silicon coating (a-Si). This work was done using molecular dynamics simulation. We first studied the cyclic deformation of gold nanowires (Au-NW) and gold-silicon core-shell nanowires (AuSi-NW). These simulations showed that the Au-NW is deformed during cyclic loading by two main mechanisms: extensive twinning and the slip of a single atomic plane. Cycling gradually alters the morphology of the structure by increasing the number and size of defects created on the surface. The cyclic deformation of the AuSi-NW shows that the a-Si coating delocalizes the plasticity along the structure and allows to better preserve the initial morphology of the core. We then developed an original method for generating nanoporous gold. This method was validated by structural and mechanical comparison with experimental results. Then we studied the tensile and compressive deformation of different structures generated by this method. In both cases, we have highlighted the deformation mechanisms of ligaments. In tension, our simulations have brought new results to better understand why nanoporous gold is brittle while bulk gold is ductile. In particular, we studied how the catastrophic failure of ligaments occurs by stress transfer between them. In compression we have shown, for example, that pore collapse and the creation of grain boundaries are responsible for the increase of stress at the transition from flow to densification. Tensile and compression tests simulations on the same structures but coated with amorphous silicon show several interesting results. For example, the strength of the structures is increased by a factor of 2 to 4. In addition, the coating has the effect of delocalizing the plasticity, which increases ductility, particularly in tension. In compression, the transition from flow to densification is advanced probably due to the decrease in pore size caused by the coating.

Page generated in 0.0643 seconds