Return to search

Spatially resolved studies of the leakage current behavior of oxide thin-films

Im Laufe der Verkleinerungen integrierter Schaltungen ergab sich die Notwendigkeit der alternativen dielektrischen Materialen. Hohe Polarisierbarkeiten in diesen dielektrischen Dünnfilmen treten erst in hoch direktionalen kristallinen Phasen auf. Aufgrund der erschwerten Integrierbarkeit von epitaktischen, einkristallinen Oxidfilmen können nur poly-, beziehungsweise nanokristalle Filme eingesetzt werden. Diese sind jedoch mit hohen Leckströmen behaftet. Weil die Information in einer DRAM-Zelle als Ladung in einem Kondensator gespeichert wird ist der Verlust dieser Ladung durch Leckströme die Ursache für Informationsverluste. Die Frequenz der notwendigen Auffrischungszyklen einer DRAM-Zelle wird direkt durch die Leckströme bestimmt. Voraussetzungen für die Entwicklung neuer dielektrischer Materialien ist das Verständnis der zugrunde liegenden Ladungsträgertransportmechanismen und ein Verständnis der strukturellen Schichteigenschaften, welche zu diesen Leckströmen führen. Conductive atomic force Microscopy ist ein Rastersondenmethode mit der strukturelle Eigenschaften mit lokaler elektrischer Leitfähigkeit korreliert wird. Mit dieser Methode wurde in einer vergleichenden Studie die räumlichen Leckstromverteilungen untersucht. Und es wurde gezeigt, dass es genügt eine nicht geschlossene Zwischenschicht Aluminiumoxid in eine Zirkoniumdioxidschicht zu integrieren um die Leckströme signifikant zu reduzieren während eine ausreichend hohe Kapazität erhalten bleibt. Darüberhinaus wurde ein CAFM modifiziert und benutzt um das Schaltverhalten eines Siliziumnanodrahtschottkybarrierenfeleffektransistor in Abhängigkeit der Spitzenposition zu untersuchen. Es konnte experimentell bestätigt werden das die Schottkybarrieren den Ladungstransport in diesen Bauteilen kontrollieren. Darüber hinaus wurde ein proof-of-concept für eine umprogrammierbaren nichtflüchtigen Speicher, der auf Ladungsakkumulation und der resultierenden Bandverbiegung an den Schottkybarrieren basiert, gezeigt. / In the course of the ongoing downscaling of integrated circuits the need for alternative dielectric materials has arisen. The polarizability of these dielectric thin-films is highest in highly directional crystalline phases. Since epitaxial single crystalline oxide films are very difficult to integrate into the complex DRAM fabrication process, poly- or nanocrystalline thin-films must be used. However these films are prone to very high leakage currents. Since the information is stored as charge on a capacitor in the DRAM cell, the loss of this charge through leakage currents is the origin of information loss. The rate of the necessary refresh cycles is directly determined by these leakage currents. A fundamental understanding of the underlying charge carrier transport mechanisms and an understanding of the structural film properties leading to such leakage currents are essential to the development of new, dielectric thin-film materials. Conductive Atomic Force Microscopy (CAFM) is a scanning probe based technique which correlates structural film properties with local electrical conductivity. This method was used to examine the spatial distribution of leakage currents in a comparative study. I was shown that it is sufficient to include an unclosed interlayer of Aluminium oxide into a Zirconium dioxide film to significantly reduce leakage currents while maintaining a sufficiently high capacitance. Moreover, a CAFM was modified and used to examine the switching behavior of a silicon nanowire Schottky barrier field effect transistors in dependence of the probe position. It was proven experimentally that Schottky barriers control the charge carrier transport in these devices. In addition, a proof of concept for a reprogrammable nonvolatile memory device based on charge accumulation and band bending at the Schottky barriers was shown.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17398
Date27 May 2013
CreatorsMartin, Christian Dominik
ContributorsFischer, Saskia F., Manzke, Recardo, Mikolajick, Thomas
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
RightsNamensnennung - Weitergabe unter gleichen Bedingungen, http://creativecommons.org/licenses/by-sa/3.0/de/

Page generated in 0.0024 seconds