Diese Arbeit befasst sich mit der Konstruktion verbesserter interpolierender Mesonenfelder in der Gitter-QCD. Sie hat das primäre Ziel, Korrelationsfunktionen mit einem deutlich reduzierten Beitrag des ersten angeregten Mesonenzustandes zu erhalten, um eine sicherere Bestimmung von Massen und Zerfallskonstanten der Mesonen zu ermöglichen. Eine Basis solcher interpolierender Mesonen-Randfelder wird im Schrödinger Funktional in der gequenchten Approximation benutzt. Verbesserte interpolierende Felder zur Bestimmung spektraler Eigenschaften leichter pseudoskalarer Mesonen sowie des B--Mesonensystems (letzteres wird in führender Ordnung der HQET behandelt) werden auf mehreren Wegen gewonnen. Ein Hilfsmittel, verbesserte Felder zu konstruieren, ist das Variationsprinzip. Es wird auf Matrizen von Rand-Rand-Korrelationsfunktionen angewandt. Darüber hinaus werden alternative Analysemethoden vorgestellt. Sie erlauben sowohl die Abschätzung der Grundzustandsenergie als auch der Energielücke zum ersten radial angeregten Zustand. Die Untersuchung des B-Mesonensystems ist in vielfacher Hinsicht interessant. Zum einen werden sie in sogenannten B-Fabriken, wie z. B. im BaBar- und Belle-Experiment, in grosser Zahl erzeugt, um ihre charakteristischen Eigenschaften (Masse, Zerfallsbreiten, CP-Symmetrie verletzende Zerfälle usw.) genau zu messen. Zum anderen müssen die von der Theorie vorhergesagten auftretenden Phänomene, wie z. B. die CP-Verletzung, auch verstanden werden. Die Methoden der Gittereichtheorie können unter anderem dabei helfen, bestehende Unsicherheiten in CKM-Matrixelementen durch nicht-perturbative Bestimmungen hadronischer Massen, Zerfallskonstanten usw. zu reduzieren. / The general aim of this thesis is to probe several methods to extract low-energy quantities (masses, decay constants, ...) more reliably in lattice gauge theory. We will investigate how to suppress contributions to correlation functions from the first excited meson state. We will show how to construct so-called improved meson interpolating fields, as they have only small contributions from the first excited meson state, from a basis of interpolating fields at the Schrödinger functional boundaries. The variational principle is applied to correlation matrices that are built up from boundary-to-boundary correlation functions. It will deliver information about the lowest-lying meson states in the considered channel. We also investigate the possibility to cancel the first excited state contribution by means of an alternative method. Moreover, an alternative way to extract the mass gap between the ground and the first excited state will be presented. Monte-Carlo simulations at several lattice spacings are performed in the ''quenched approximation''. Spectral properties of light-light and static-light pseudoscalar mesons are investigated. The first type is realised by two mass-degenerate quarks at about the strange quark mass, the second type by a light quark with the mass of the strange quark and an infinitely heavy b-quark. The light-light channel describes unphysically heavy pions and the static-light one is an approximation for the Bs-meson. The investigation of the latter case is particularly interesting since so-called B--factories, such as BaBar and Belle, are gathering physical information about masses, decay modes and CP--violating effects in the B--meson system.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/15758 |
Date | 04 May 2004 |
Creators | Molke, Heiko |
Contributors | Wittig, H., Sommer, R., Wolff, U. |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0015 seconds