Return to search

Dynamic regulation of the melanocortin 4 receptor system in body weight homeostasis and reproductive maturation in fish / Dynamische Regulation des Melanocortin-4-Rezeptor Systems bei der Körpergewichtshomöostase und der Fortpflanzungsreifung bei Fischen

Puberty is an important period of life with physiological changes to enable animals to reproduce. Xiphophorus fish exhibit polymorphism in body size, puberty timing, and reproductive tactics. These phenotypical polymorphisms are controlled by the Puberty (P) locus. In X. nigrensis and X. multilineatus, the P locus encodes the melanocortin 4 receptor (Mc4r) with high genetic polymorphisms.
Mc4r is a member of the melanocortin receptors, belonging to class A G-protein coupled receptors. The Mc4r signaling system consists of Mc4r, the agonist Pomc (precursor of various MSH and of ACTH), the antagonist Agrp and accessory protein Mrap2. In humans, MC4R has a role in energy homeostasis. MC4R and MRAP2 mutations are linked to human obesity but not to puberty.
Mc4rs in X. nigrensis and X. multilineatus are present in three allele classes, A, B1 and B2, of which the X-linked A alleles express functional receptors and the male-specific Y-linked B alleles encode defective receptors. Male body sizes are correlated with B allele type and B allele copy numbers. Late-maturing large males carry B alleles in high copy number while early-maturing small males carry B alleles in low copy number or only A alleles. Cell culture co-expression experiments indicated that B alleles may act as dominant negative receptor mutants on A alleles.
In this study, the main aim was to biochemically characterize the mechanism of puberty regulation by Mc4r in X. nigrensis and X. multilineatus, whether it is by Mc4r dimerization and/or Mrap2 interaction with Mc4r or other mechanisms. Furthermore, Mc4r in X. hellerii (another swordtail species) and medaka (a model organism phylogenetically close to Xiphophorus) were investigated to understand if the investigated mechanisms are conserved in other species.
In medaka, the Mc4r signaling system genes (mc4r, mrap2, pomc, agrp1) are expressed before hatching, with agrp1 being highly upregulated during hatching and first feeding. These genes are mainly expressed in adult brain, and the transcripts of mrap2 co-localize with mc4r indicating a function in modulating Mc4r signaling. Functional comparison between wild-type and mc4r knockout medaka showed that Mc4r knockout does not affect puberty timing but significantly delays hatching due to the retarded embryonic development of knockout medaka. Hence, the Mc4r system in medaka is involved in regulation of growth rather than puberty.
In Xiphophorus, expression co-localization of mc4r and mrap2 in X. nigrensis and X. hellerii fish adult brains was characterized by in situ hybridization. In both species, large males exhibit strikingly high expression of mc4r while mrap2 shows similar expression level in the large and small male and female. Differently, X. hellerii has only A-type alleles indicating that the puberty regulation mechanisms evolved independently in Xiphophorus genus. Functional analysis of Mrap2 and Mc4r A/B1/B2 alleles of X. multilineatus showed that increased Mrap2 amounts induce higher cAMP response but EC50 values do not change much upon Mrap2 co-expression with Mc4r (expressing only A allele or A and B1 alleles). A and B1 alleles were expressed higher in large male brains, while B2 alleles were only barely expressed. Mc4r A-B1 cells have lower cAMP production than Mc4r A cells. Together, this indicates a role of Mc4r alleles, but not Mrap2, in puberty onset regulation signaling. Interaction studies by FRET approach evidenced that Mc4r A and B alleles can form heterodimers and homodimers in vitro, but only for a certain fraction of the expressed receptors. Single-molecule colocalization study using super-resolution microscope dSTORM confirmed that only few Mc4r A and B1 receptors co-localized on the membrane. Altogether, the species-specific puberty onset regulation in X. nigrensis and X. multilineatus is linked to the presence of Mc4r B alleles and to some extent to its interaction with A allele gene products. This is reasoned to result in certain levels of cAMP signaling which reaches the dynamic or static threshold to permit late puberty in large males.
In summary, puberty onset regulation by dominant negative effect of Mc4r mutant alleles is a special mechanism that is found so far only in X. nigrensis and X. multilineatus. Other Xiphophorus species obviously evolved the same function of the pathway by diverse mechanisms. Mc4r in other fish (medaka) has a role in regulation of growth, reminiscent of its role in energy homeostasis in humans. The results of this study will contribute to better understand the biochemical and physiological functions of the Mc4r system in vertebrates including human. / Die Pubertät ist ein wichtiger Lebensabschnitt mit physiologischen Veränderungen, die die Fortpflanzung von Tieren ermöglichen. Xiphophorus Fische weisen einen Polymorphismus in Bezug auf Körpergröße, Pubertätszeit und Fortpflanzungstaktik auf. Diese phänotypischen Polymorphismen werden durch den Pubertäts (P) Locus gesteuert. In X. nigrensis und X. multilineatus kodiert der P Locus den Melanocortin-4-Rezeptor (Mc4r) mit hohen genetischen Polymorphismen.
Mc4r gehört zu den Melanocortin-Rezeptoren, die zur Klasse A der G-Protein-gekoppelten Rezeptoren gehören. Das Mc4r-Signalsystem besteht aus Mc4r, dem Agonisten Pomc (Prohormon der verschiedenen MSH und des ACTH), dem Antagonisten Agrp und dem akzessorischen Protein Mrap2. Beim Menschen spielt MC4R eine Rolle bei der Energiehomöostase. MC4R und MRAP2 Mutationen stehen im Zusammenhang mit menschlicher Fettleibigkeit, jedoch nicht mit der Pubertät.
Mc4rs in X. nigrensis und X. multilineatus sind in drei Allelklassen vorhanden, A, B1 und B2, von denen die X-chromosomalen A Allele funktionelle Rezeptoren exprimieren und die spezifischen männlichen Y-chromosomalen B Allele für defekte Rezeptoren kodieren. Die männliche Körpergröße korreliert mit dem B Alleltyp und der Kopienzahl des B Allels. Spätreife große Männchen tragen B Allele in hoher Kopienzahl, während frühreife kleine Männchen B Allele in niedriger Kopienzahl oder nur A Allele tragen. Koexpressions-Experimente in Zellkultur zeigten, dass B Allele als dominant negative Mutanten-Rezeptor auf A Allele wirken können.
In dieser Studie war das Hauptziel die biochemische Charakterisierung des Mechanismus der Pubertätsregulation durch Mc4r in X. nigrensis und X. multilineatus. Dabei wurde untersucht, ob die Regulation durch eine Mc4r Dimerisierung und/oder Mrap2 Interaktion mit Mc4r oder durch andere Mechanismen erfolgt. Des Weiteren wurde Mc4r in X. hellerii (einer anderen Schwertträger Art) und Medaka (ein phylogenetisch naheliegender Modellorganismus von Xiphophorus) untersucht, um zu verstehen, ob die untersuchten Mechanismen in anderen Arten konserviert sind.
In Medaka werden die Gene des Mc4r Signalsystems (mc4r, mrap2, pomc, agrp1) vor dem Schlüpfen exprimiert, wobei agrp1 während des Schlüpfens und der ersten Fütterung stark hochreguliert wird. Im adulten Medaka werden diese Gene hauptsächlich im Gehirn exprimiert und die Transkripte von mrap2 und mc4r kolokalisieren, was auf eine Funktion bei der Modulation der Mc4r-Signaltransduktion hinweist. Ein funktionaler Vergleich zwischen Wildtyp- und mc4r-Knockout Medaka zeigte, dass der Mc4r-Knockout das Pubertäts-Timing nicht beeinflusst, das Schlüpfen jedoch aufgrund der verzögerten embryonalen Entwicklung von Knockout-Medaka signifikant verzögert. Daher ist das Mc4r System in Medaka eher an der Regulation des Wachstums als an der Pubertät beteiligt.
Bei Xiphophorus wurde die Lokalisierung von mc4r und mrap2 in erwachsenen Gehirnen von X. nigrensis und X. hellerii durch in situ Hybridisierung charakterisiert. Bei beiden Spezies zeigen große Männchen eine auffallend hohe Expression von mc4r, während mrap2 bei großen und kleinen Männchen und Weibchen ein ähnliches Expressionsniveau zeigt. Im Gegensatz dazu weist X. hellerii nur Allele vom A-Typ auf, was darauf hinweist, dass sich die Pubertätsregulationsmechanismen in dem Genus Xiphophorus unabhängig voneinander entwickelt haben. Die funktionelle Analyse der Mrap2 und Mc4r A/B1/B2 Allele von X. multilineatus zeigte, dass erhöhte Mrap2-Mengen eine höhere cAMP-Antwort induzieren, die EC50-Werte sich jedoch bei der Mrap2-Coexpression mit Mc4r nicht wesentlich ändern (nur A Allel oder A und B1 Allele). A und B1 Allele wurden in großen männlichen Gehirnen höher exprimiert, während B2 Allele kaum exprimiert wurden. Mc4r A-B1 Zellen haben eine geringere cAMP-Produktion als Mc4r A Zellen. Zusammengenommen deutet dies auf eine Rolle von Mc4r-Allelen, jedoch nicht von Mrap2, bei der Signalgebung zur Regulation des Pubertätsbeginns hin. Interaktionsstudien mit den FRET-Methoden zeigten, dass Mc4r A und B Allele in vitro Heterodimere und Homodimere bilden können, jedoch nur für einen bestimmten Anteil der exprimierten Rezeptoren. Die Einzelmolekül-co-lokalisierungsstudie unter Verwendung von der hochauflösenden Mikroskopiemethode dSTORM bestätigte, dass nur wenige Mc4r A und B1 Rezeptoren auf der Membran co-lokalisiert sind. Insgesamt ist die artspezifische Regulation des Pubertätsbeginns bei X. nigrensis und X. multilineatus auf das Vorhandensein von Mc4r B Allelen und teilweise auf deren Interaktion mit Genprodukten des A Allels zurückzuführen. Dies wird dadurch begründet, dass ein bestimmtes cAMP Niveau (statische oder dynamische Schwelle) erreicht werden muss, um die Pubertät einzuleiten. In großen Männchen wird dieses cAMP Niveau später erreicht und so die Pubertät später eingeleitet.
Zusammenfassend ist die Regulation des Pubertätsbeginns durch die dominante negative Wirkung von mutierten Mc4r Allelen ein spezieller Mechanismus, der bisher nur bei X. nigrensis und X. multilineatus zu finden ist. Andere Xiphophorus Arten haben offensichtlich durch andere Mechanismen die gleiche Funktion des Signalwegs entwickelt. In anderen Fischen (Medaka) spielt Mc4r eine Rolle bei der Regulation des Wachstums und erinnert an seine Rolle bei der Energie-Homöostase beim Menschen. Die Ergebnisse dieser Studie werden dazu beitragen, die biochemischen und physiologischen Funktionen des Mc4r-Systems bei Wirbeltieren, einschließlich Menschen, besser zu verstehen.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:20653
Date January 2022
CreatorsLiu, Ruiqi
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by-nc/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds