This thesis addresses the problem of energy management of a hybrid electric power unit for an autonomous vehicle. We introduce, evaluate, and discuss the idea of autonomous-specific energy management strategy. This method is an optimization-based strategy which improves the powertrain fuel economy by exploiting motion planning data.
First, to build a firm base for further evaluations, we will develop a high-fidelity system-level model for our case study using MATLAB/Simulink. This model mostly concerns about energy-related aspects of the powertrain and the vehicle. We will derive and implement the equations for each of the model subsystems. We derive model parameters using available data in the literature or online. Evaluation of the developed model shows acceptable conformity with the actual dynamometer data. We will use this model to replace the built-in rule-based logic with the proposed strategy and assess the performance.\par
Second, since we are considering an optimization-based approach, we will develop a novel convex representation of the vehicle and powertrain model. This translates to reformulating the model equations using convex functions. Consequently, we will express the fuel-efficient energy management problem as the convex optimization problem. We will solve the optimization problem using dedicated numerical solvers. Extracting the control inputs using this approach and applying them on the high-fidelity model provides similar results to dynamic programming in terms of fuel consumption but in substantially less amount of time. This will act as a pivot for the subsequent real-time analysis.\par
Third, we will perform a proof-of-concept for the autonomous-specific energy management strategy. We implement an optimization-based path and trajectory planning for a vehicle in the simplified driving scenario of a racing track. Accordingly, we use motion planning data to obtain the energy management strategy by solving an optimization problem. We will let the vehicle to travel around the circuit with the ability to perceive and plan up to an observable horizon using the receding horizon approach. Developed approach for energy management strategy shows a substantial reduction in the fuel consumption of the high-fidelity model, compared to the rule-based controller. / Thesis / Master of Science in Mechanical Engineering (MSME) / The automotive industry is on the verge of groundbreaking transformations as a result of electrification and autonomous driving. Electrified autonomous car of the future is sustainable, energy-efficient, more convenient, and safer. In addition to the advantages of electrification and autonomous driving individually, the intersection and interaction of these mainstreams provide new opportunities for further improvements on the vehicles. Autonomous cars generate an unprecedented amount of real-time data due to excessive use of perception sensors and processing units. This thesis considers the case of an autonomous hybrid electric vehicle and presents the novel idea of autonomous-specific energy management strategy. Specifically, this thesis is a proof-of-concept, a trial to exploit the motion planning data for a self-driving car to improve the fuel economy of the hybrid electric power unit by adopting a more efficient energy management strategy. With the ever-increasing number of autonomous hybrid electric vehicles, particularly in the self-driving fleets, the presented method shows an extremely promising potential to reduce the fuel consumption of these vehicles.
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/24847 |
Date | January 2019 |
Creators | Amirfarhangi Bonab, Saeed |
Contributors | Emadi, Ali, Mechanical Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0049 seconds