Gametophytic self-incompatibility limits the ability to derive inbred lines of potato through self-pollination and is prevalent in diploid potato. Within a population of F1 hybrids between two genotypes used in potato genome sequencing, we observed fruit set on many greenhouse-grown plants. Subsequently, after controlled self-pollinations, we confirmed fruit set in 32 of 103 F1 plants. Our goal was to identify genes responsible for self-compatibility in this population and to advance selfed progeny to develop highly homozygous inbred lines. The F1 population was genotyped using a single nucleotide polymorphism (SNP) array. Polymorphic and robust SNPs were analyzed by Fisher\'s Exact Test to identify allelic states segregating with the self-compatible phenotype. Filtering 1966 SNPs to retain only those with p-values less than 0.0001 yielded 95 highly significant SNPs, with all SNPs on anchored scaffolds located on chromosome 12. Candidate genes encoding for multiple notable proteins including an S-protein homologue were identified near highly significant SNPs on the Potato Genome Browser. Seeds obtained after self-pollination of self-compatible individuals were used to advance the population for three generations. SNP chip genotyping of the S3 generation revealed entirely different SNPs segregating for self-compatibility on nine different chromosomes. Comparison of the allelic state of SNPs in the F1 and S3 generations revealed a heterozygosity reduction by 80%, with fixation of many SNPs including those surrounding the S-protein homologue. We conclude that the genes responsible for segregation of self-compatibility in the S3 generation are different from those in the F1 generation. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/51653 |
Date | 03 October 2013 |
Creators | Arnold, Brenda Elaine |
Contributors | Horticulture, Veilleux, Richard E., Holliday, Jason A., Shuman, Joel L. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0028 seconds