Return to search

An algebraic p-adic L-function for ordinary families / Une fonction L p-adique algébrique pour les familles ordinaires

Dans cette thèse, nous construisons des fonctions L p-adique algébriques pour les familles de représentations galoisiennes attachées aux familles p-adique analytiques de représentations automorphes en utilisant le formalisme des complexes de Selmer. Ce résultat est obtenu principalement en effectuant une modification des complexes de Selmer pour s’assurer que nous traitons avec des complexes parfaits et démontrer un théorème de contrôle pour les facteurs d'Euler locaux aux places en dehors de p. Le théoréme de contrôle pour les facteurs d'Euler locaux est obtenu par l’étude de la variation de la monodromie sous spécialisations purs des familles p-adiques de représentations galoisiennes restreintes aux groupes de décomposition en dehors de p. Cela nous permet de démontrer un théorème de contrôle pour les fonctions algébriques p-adique que nous construisons pour les familles de Hida de formes paraboliques ordinaires et les représentations automorphes ordinaires pour les groupes unitaires définies. Pour les familles de Hida de formes paraboliques ordinaires, nous construisons un fonction L p-adique algébrique de deux variables et formulons une conjecture la reliant à la fonction L p-adique analytique construite par Emerton, Pollack et Weston. En utilisant des résultats de Kato, Skinner et Urban, nous montrons cette conjecture dans certains cas particuliers. / In this thesis, we construct algebraic p-adic L-functions for families of Galois representations attached to p-adic analytic families of automorphic representations using the formalism of Selmer complexes. This is achieved mainly through making a modification of the Selmer complex to ensure that we deal with perfect complexes and proving a control theorem for the local Euler factors at places not lying above p. The control theorem for local Euler factors is obtained by studying the variation of monodromy under pure specializations of p-adic families of Galois representations restricted to decomposition groups at places of residue characteristic different from p. This allows us to prove a control theorem for the algebraic p-adic L-functions that we construct for Hida families of ordinary cusp forms and ordinary automorphic representations for definite unitary groups. For the Hida family of ordinary cusp forms, we construct a two-variable algebraic p-adic L-function and formulate a conjecture relating it with the analytic p-adic L-function constructed by Emerton, Pollack and Weston. Using results due to Kato, Skinner and Urban, we prove this conjecture in some special cases.

Identiferoai:union.ndltd.org:theses.fr/2014PA112104
Date11 June 2014
CreatorsSaha, Jyoti Prakash
ContributorsParis 11, Università degli studi di padova, Fouquet, Olivier, Iovita, Adrian
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds