Spelling suggestions: "subject:"fonctions L padique"" "subject:"fonctions L peladique""
1 |
An algebraic p-adic L-function for ordinary families / Une fonction L p-adique algébrique pour les familles ordinairesSaha, Jyoti Prakash 11 June 2014 (has links)
Dans cette thèse, nous construisons des fonctions L p-adique algébriques pour les familles de représentations galoisiennes attachées aux familles p-adique analytiques de représentations automorphes en utilisant le formalisme des complexes de Selmer. Ce résultat est obtenu principalement en effectuant une modification des complexes de Selmer pour s’assurer que nous traitons avec des complexes parfaits et démontrer un théorème de contrôle pour les facteurs d'Euler locaux aux places en dehors de p. Le théoréme de contrôle pour les facteurs d'Euler locaux est obtenu par l’étude de la variation de la monodromie sous spécialisations purs des familles p-adiques de représentations galoisiennes restreintes aux groupes de décomposition en dehors de p. Cela nous permet de démontrer un théorème de contrôle pour les fonctions algébriques p-adique que nous construisons pour les familles de Hida de formes paraboliques ordinaires et les représentations automorphes ordinaires pour les groupes unitaires définies. Pour les familles de Hida de formes paraboliques ordinaires, nous construisons un fonction L p-adique algébrique de deux variables et formulons une conjecture la reliant à la fonction L p-adique analytique construite par Emerton, Pollack et Weston. En utilisant des résultats de Kato, Skinner et Urban, nous montrons cette conjecture dans certains cas particuliers. / In this thesis, we construct algebraic p-adic L-functions for families of Galois representations attached to p-adic analytic families of automorphic representations using the formalism of Selmer complexes. This is achieved mainly through making a modification of the Selmer complex to ensure that we deal with perfect complexes and proving a control theorem for the local Euler factors at places not lying above p. The control theorem for local Euler factors is obtained by studying the variation of monodromy under pure specializations of p-adic families of Galois representations restricted to decomposition groups at places of residue characteristic different from p. This allows us to prove a control theorem for the algebraic p-adic L-functions that we construct for Hida families of ordinary cusp forms and ordinary automorphic representations for definite unitary groups. For the Hida family of ordinary cusp forms, we construct a two-variable algebraic p-adic L-function and formulate a conjecture relating it with the analytic p-adic L-function constructed by Emerton, Pollack and Weston. Using results due to Kato, Skinner and Urban, we prove this conjecture in some special cases.
|
2 |
Alpha Gamma-modules de de Rham et fonctions L p-adiques / De Rham Alpha Gamma-modules and L p-functionsRodrigues Jacinto, Joaquín 25 November 2016 (has links)
Nous étudions, dans cette thèse, la construction des fonctions L p-adiques des motifs sur $\Q$ et, plus particulièrement, des formes modulaires.Dans les premiers trois chapitres on étend des constructions de Perrin-Riou pour construire, pour une représentation p-adique de de Rham $V$ du groupe de Galois absolu $\mathscr{G}_\qp$ de $\qp$ (ou, plus généralement, un alpha gamma-module de de Rham sur l'anneau de Robba) et un système compatible d'éléments globaux, une fonction L p-adique. On montre, en utilisant des lois de réciprocité montrées par Perrin-Riou, Colmez, Cherbonnier-Colmez, Berger et Nakamura, que ces fonctions interpolent des valeurs arithmétiques intéressantes aux caractères localement algébriques.Dans les derniers trois chapitres, on se spécialise au cas de dimension $2$. On démontre, en s'inspirant des techniques de Nakamura et des nouvelles techniques de changement de poids de Colmez introduites pour l'étude des vecteurs localement algébriques dans la correspondance de Langlands L p-adique pour $\mathrm{GL}_2(\qp)$, une équation fonctionnelle pour notre fonction L p-adique. Comme une application de cette équation fonctionnelle, on fournit les argument manquants dans les travaux de Nakamura, complétant la preuve de la conjecture $\epsilon$ locale de Kato pour les représentations de dimension $2$. Pour le motif associé à une forme modulaire, on utilise tous ces résultats pour interpréter les valeurs interpolées par la fonction L p-adique en termes des valeurs spéciales de la fonction $L$ complexe de cette forme. / This thesis studies the construction of $p$-adic $L$-functions associated to motives over $\Q$ and, in particular, to modular forms.In the first three chapters we generalize some constructions of Perrin-Riou in order to construct, for any $p$-adic de Rham representation $V$ of the absolute Galois group $\mathscr{G}_\qp$ of $\qp$ (or, more generally, any de Rham $(\varphi, \Gamma)$-module over the Robba ring) and any compatible system of global elements, a $p$-adic $L$-function. We show, by the use of some reciprocity laws proved by Perrin-Riou, Colmez, Cherbonnier-Colmez, Berger and Nakamura, that these functions interpolate interesting arithmetic values at locally algebraic characters.The last three chapters deal with the particular case of dimension $2$. We show, inspired by some techniques of Nakamura and certain weight change techniques introduced by Colmez for the study of locally algebraic vectors in the $p$-adic Langlads correspondence for $\mathrm{GL}_2(\qp)$, that our $p$-adic $L$-function satisfies a functional equation. As an application of our functional equation, we fulfil the missing arguments in the work of Nakamura, providing a complete proof of Kato's local $\epsilon$-conjecture for $2$-dimensional representations. For the motive associated to a modular form, we use these results to interpret the interpolated values of the $p$-adic $L$-function in terms of special values of the complex $L$-function of the form.
|
Page generated in 0.0985 seconds