• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Alpha Gamma-modules de de Rham et fonctions L p-adiques / De Rham Alpha Gamma-modules and L p-functions

Rodrigues Jacinto, Joaquín 25 November 2016 (has links)
Nous étudions, dans cette thèse, la construction des fonctions L p-adiques des motifs sur $\Q$ et, plus particulièrement, des formes modulaires.Dans les premiers trois chapitres on étend des constructions de Perrin-Riou pour construire, pour une représentation p-adique de de Rham $V$ du groupe de Galois absolu $\mathscr{G}_\qp$ de $\qp$ (ou, plus généralement, un alpha gamma-module de de Rham sur l'anneau de Robba) et un système compatible d'éléments globaux, une fonction L p-adique. On montre, en utilisant des lois de réciprocité montrées par Perrin-Riou, Colmez, Cherbonnier-Colmez, Berger et Nakamura, que ces fonctions interpolent des valeurs arithmétiques intéressantes aux caractères localement algébriques.Dans les derniers trois chapitres, on se spécialise au cas de dimension $2$. On démontre, en s'inspirant des techniques de Nakamura et des nouvelles techniques de changement de poids de Colmez introduites pour l'étude des vecteurs localement algébriques dans la correspondance de Langlands L p-adique pour $\mathrm{GL}_2(\qp)$, une équation fonctionnelle pour notre fonction L p-adique. Comme une application de cette équation fonctionnelle, on fournit les argument manquants dans les travaux de Nakamura, complétant la preuve de la conjecture $\epsilon$ locale de Kato pour les représentations de dimension $2$. Pour le motif associé à une forme modulaire, on utilise tous ces résultats pour interpréter les valeurs interpolées par la fonction L p-adique en termes des valeurs spéciales de la fonction $L$ complexe de cette forme. / This thesis studies the construction of $p$-adic $L$-functions associated to motives over $\Q$ and, in particular, to modular forms.In the first three chapters we generalize some constructions of Perrin-Riou in order to construct, for any $p$-adic de Rham representation $V$ of the absolute Galois group $\mathscr{G}_\qp$ of $\qp$ (or, more generally, any de Rham $(\varphi, \Gamma)$-module over the Robba ring) and any compatible system of global elements, a $p$-adic $L$-function. We show, by the use of some reciprocity laws proved by Perrin-Riou, Colmez, Cherbonnier-Colmez, Berger and Nakamura, that these functions interpolate interesting arithmetic values at locally algebraic characters.The last three chapters deal with the particular case of dimension $2$. We show, inspired by some techniques of Nakamura and certain weight change techniques introduced by Colmez for the study of locally algebraic vectors in the $p$-adic Langlads correspondence for $\mathrm{GL}_2(\qp)$, that our $p$-adic $L$-function satisfies a functional equation. As an application of our functional equation, we fulfil the missing arguments in the work of Nakamura, providing a complete proof of Kato's local $\epsilon$-conjecture for $2$-dimensional representations. For the motive associated to a modular form, we use these results to interpret the interpolated values of the $p$-adic $L$-function in terms of special values of the complex $L$-function of the form.

Page generated in 0.0662 seconds