Return to search

Quimitaxonomia e fitoquímica de espécies da tribo Heliantheae (Asteraceae) e uso de Quimioinformática em elucidação estrutural / Chemotaxonomy and phytochemistry of Heliantheae (Asteraceae) species and the use of Chemoinformatics in structure elucidation

A química de produtos naturais sempre foi uma fonte importante de novas substâncias e de substâncias bioativas. No mundo moderno, o homem utiliza os produtos naturais para diversos fins: corantes, edulcorantes, essências, defensivos agrícolas e principalmente medicamentos. Com o desenvolvimento das técnicas de isolamento de substâncias, cresceu a necessidade de organizar as informações obtidas e também a criação de meios para a identificação mais rápida das substâncias isoladas. Esta foi uma das necessidades que fez surgir a Quimioinformática. Quimioinformática é uma disciplina que utiliza os métodos da informática para organizar dados químicos, analisar estes dados e gerar novas informações a partir destes dados. Esta ferramenta tem sido utilizada com sucesso em procura por novas drogas (QSAR/QSPR), elucidação estrutural automatizada de substâncias orgânicas e em cálculos e previsão de propriedades físico-químicas de diversas moléculas. Os objetivos do presente trabalho foram o estudo fitoquímico de espécies dos gêneros Dimerostemma e Ichthyothere com o intuito de isolar novas substâncias e o desenvolvimento de técnicas envolvendo quimioinformática com o intuito de auxiliar a elucidação estrutural de produtos naturais. Realizou-se a técnica de microamstragem de tricomas glandulares de diversas espécies pertencentes a gêneros da tribo Heliantheae (Viguiera, Tithonia, Dimerostemma). Através da microamostragem foi possível identificar diversas substâncias presentes nos tricomas glandulares das espécies analisadas. Das duas espécies de Dimerostemma investigadas (D. brasilianum e D. rotundifolium) foi possível identificar dois germacrolidos e dois eudesmanolidos, enquanto que de Ichthyothere terminalis foi possível a identificação de dois melampolidos, todos eles lactonas sesquiterpênicas. Foram treinadas redes neurais artificiais para a realização da identificação dos esqueletos carbônicos de determinadas substâncias a partir dos dados obtidos através dos espectros de RMN 13C, sendo que os resultados obtidos podem ser considerados satisfatórios. Foi desenvolvido um software para efetuar a identificação automática de substâncias através da comparação com uma biblioteca de padrões que possui dados cromatográficos de 51 lactonas sesquiterpênicas. Esse software, chamado de NAPROSYS, também é capaz de fazer comparação de dados de RMN de amostra com dados de RMN presentes em uma biblioteca de dados, tornando possível a identificação imediata de substâncias presentes na biblioteca e também auxiliar a elucidação estrutural de substâncias que não estão nela presentes. Para testar a eficiência do NAPROSYS, o programa foi utilizado com sucesso para identificar LSTs através da microamostragem de tricomas glandulares. A eficiência do NAPROSYS em identificar dados de RMN de substâncias presentes na biblioteca foi testada com substâncias isoladas do gênero Tithonia e Viguiera que possuem substâncias bem descritas na literatura e já isoladas no nosso laboratório, sendo que os resultados apresentados foram excelentes. Criou-se também dois modelos de redes neurais para prever tempos de retenção de lactonas sesquiterpênicas em cromatografia líquida (QSRR) com o objetivo de melhorar o desempenho do NAPROSYS em análises de dados cromatográficos. Os resultados para este caso, embora coerentes, precisam ser melhorados. Neste trabalho concluimos que o uso das técnicas clássicas juntamente com as novas técnicas de Quimoinformática pode se tornar uma ferramenta muito eficaz para a elucidação estrutural e busca de substâncias com determinadas propriedades químicas ou mesmo na bioprospecção de novas substâncias bioativas. / Natural products chemistry has always been an important source for new andbioactive compounds. In modern world, mankind uses natural products to do many tasks: colouring, as essences, as agricultural defensives and many as medicines. Within the development of compound isolation techniques, the need for information organisation has grown. The need for quickly identification of isolated compounds has also grown. This was one of the necessities that made Chemoinformatics emerge. Chemoinformatics is a discipline that uses informatics as a tool to organise, analise and to generate new knowledge from chemical data. This tool has been used with success in automate structure elucidation, drug development (QSAR/QSPR) and to predict chemical-physical data of many molecules. The aims of the present work were the phytochemical study of species of the genera Dimerostemma and Ichthyothere to isolate new compounds, and the development of chemoinformatics techniques to aid natural products structure elucidation. The glandular trichome microsampling was made for diverse species of genera from the tribe Heliantheae (Viguiera, Tithonia, Dimerostemma). Many compounds were identified through glandular trichome microsampling. Two germacrolides and two eudesmanolides were identified from Dimerostemma species (D. brasilianum and D. episcopale), while from Ichthyothere terminalis two melampolides were identified, all of them being sesquiterpene lactones. Artificial Neural Networks were trained to make skeleton identification from data obtained from 13C NMR and the obtained results can be considered satisfactory. A software was developed to make automatic compound identification through the comparation with a compound library that possesses data from 51 STLs. This software is called NAPROSYS is also able to compare the NMR data of the sample with the NMR data stored into a compound library, making the imediate identification of compounds present into library possible and also help the structure elucidation of unknown compounds. To test NAPROSYS\' efficience to identify NMR data of compunds sored into the library was made with compounds isolated from species of Tithonia and Viguiera genera, because these genera has well describe compounds in the literature and that has been isolated in our laboratory, and the obtained results are excellent. Two Artificial Neural Network models were created to predict the retention time of sesquiterpene lactones in liquid cromatography (QSRR) with the aim of improve NAPROSYS performance in cromatographic data analysis. The results for this case, although coherent, can be improved. The conclusion of this work is that the use of classical techniques with the new techniques of chemoinformatics can be a very efficient tool to make structure elucidation, search for compounds with certain chemical properties and even the search for new bioactive compounds.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-04062009-151139
Date02 October 2002
CreatorsStefani, Ricardo
ContributorsCosta, Fernando Batista da
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.003 seconds