Return to search

Mikromechanischer Prozess zur Herstellung mehrlagiger 3D-MEMS (EPyC-Prozess)

In der vorliegenden Dissertation wird die Entwicklung eines MEMS Herstellungsverfahrens beschrieben. Der Bosch patentierte EPyC-Prozess bietet die Möglichkeit komplexe MEMS-Strukturen mit hoher Effektivität auf engem Raum
herzustellen.
Zielsetzung dieser Arbeit ist die Untersuchung und Optimierung der EPyC-Einzelprozesse, sowie der Aufbau eines Mikrospiegelantriebs mit 40 μm hohen Elektrodenfingern für hohe z-Auslenkungen. Die Herstellung von MEMS-Strukturen mit dem EPyC-Prozess erfordert eine gute elektrische und mechanische Funktionalität der dicken epitaktischen Siliziumschichten. Durch Wiederholung der EPyC-Zyklen entsteht eine 3D-Opferstruktur. Die Herausforderung besteht darin, hohe Volumina an Polysilizium am Ende des Prozesses vollständig zu entfernen.
Durch das Wiederholen von fünf EPyC Zyklen wurde der Mikrospiegelantrieb mit
40 μm hohen vertikalen Kammelektroden erfolgreich hergestellt. Anschließend wurde der Mikrospiegelantrieb mit dem optimierten Silizium-Ätzprozess in zwei Schritten freigestellt. Damit der Mikrospiegelantrieb mechanisch beweglich und elektrisch funktional wird, wurde die SiO2-Passivierung auf den Funktionsstrukturen mittels HF-Gasphasenätzen erfolgreich entfernt. Die elektrischen und mechanischen Funktionalitäten des Mikrospiegelantriebes wurden mittels Laservibrometer geprüft und bestätigt.:1 Einleitung 1
1.1 Stand der Technik 3
1.2 Zielsetzung 6
1.3 EPyC-Prozess 7
2 Methoden 16
2.1 Abscheideverfahren 16
2.1.1 Chemische Depositionsverfahren 16
2.1.2 LPCVD-Verfahren 17
2.1.3 Thermische Oxidation 22
2.1.4 Kathodenstrahlzerstäubung (Sputtern) 23
2.2 Silizium Dotieren 24
2.3 Strukturieren von Silizium mit dem DRIE-Prozess (Deep Reactive Ion Etching) 24
2.4 Strukturieren von dielektrischen Schichten: Reaktiven Ionenätzen (RIE) 27
2.5 Gasphasenätzen von Oxid mit HF-Dampf 28
2.6 Isotopes Silizium-Opferschicht Trockenätzen 28
2.6.1 Plasmaloses isotropes Siliziumätzen mit Xenondifluorid 28
2.6.2 Plasmaunterstütztes isotropes Siliziumätzen mit Schwefelhexafluorid 31
2.7 Charakterisierung der abgeschiedenen Schichten 31
2.7.1 Kristallstruktur 31
2.7.2 Mechanische Charakterisierung 33
2.7.3 Elektrische Charakterisierung 37
2.8 Elektrische und mechanische Charakterisierung der hergestellten 3D-MEMS Struktur 38
3 Ergebnisse 41
3.1 Ablauf des Herstellungsprozesses eines einzelnen EPyC-Zyklus mit unterschiedlich dicken Epi und ihre
Charakterisierung 41
3.1.1 Ablauf der Abscheidung eines einzelnen EPyC-Zyklus 44
3.1.2 Charakterisierung der abgeschiedenen Schichten 50
3.1.2.3.1 Epi-Schicht (𝒅 = 𝟐𝟎 μ𝒎) 61
3.1.3 DRIE-Prozess für dicke Epi-Schichten 64
3.1.4 Trench-Verfüllung 69
3.1.5 Siliziumopferschichttechnik 86
3.2 Herstellung eines Mikrospiegelantriebs mittels fünf EPyC Zyklen 105
3.2.1 Ablauf der Mikrospiegelantriebsherstellung mittels EPyC-Prozesses 106
3.2.2 Charakterisierung des hergestellten Mikrospiegelantriebs 115
4 Zusammenfassung
Abbildungsverzeichnis
Tabellenverzeichnis
Eigene Veröffentlichungen
Thesen

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:74643
Date05 May 2021
CreatorsLouriki, Latifa
ContributorsOtto, Thomas, Tillack, Bernd, Technische Universität Chemnitz, Robert Bosch GmbH
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds