Return to search

Multiparametric organ modeling for shape statistics and simulation procedures / Modélisation multiparamétriques des organes pour des statistiques de forme et des procédures de simulation

La modélisation géométrique a été l'un des sujets les plus étudiés pour la représentation des structures anatomiques dans le domaine médical. Aujourd'hui, il n'y a toujours pas de méthode bien établie pour modéliser la forme d'un organe. Cependant, il y a plusieurs types d'approches disponibles et chaque approche a ses forces et ses faiblesses. La plupart des méthodes de pointe utilisent uniquement l'information surfacique mais un besoin croissant de modéliser l'information volumique des objets apparaît. En plus de la description géométrique, il faut pouvoir différencier les objets d'une population selon leur forme. Cela nécessite de disposer des statistiques sur la forme dans organe dans une population donné. Dans ce travail de thèse, on utilise une représentation capable de modéliser les caractéristiques surfaciques et internes d'un objet. La représentation choisie (s-rep) a en plus l'avantage de permettre de déterminer les statistiques de forme pour une population d'objets. En s'appuyant sur cette représentation, une procédure pour modéliser le cortex cérébral humain est proposée. Cette nouvelle modélisation offre de nouvelles possibilités pour analyser les lésions corticales et calculer des statistiques de forme sur le cortex. La deuxième partie de ce travail propose une méthodologie pour décrire de manière paramétrique l'intérieur d'un objet. La méthode est flexible et peut améliorer l'aspect visuel ou la description des propriétés physiques d'un objet. La modélisation géométrique enrichie avec des paramètres physiques volumiques est utilisée pour la simulation d'image par résonance magnétique pour produire des simulations plus réalistes. Cette approche de simulation d'images est validée en analysant le comportement et les performances des méthodes de segmentations classiquement utilisées pour traiter des images réelles du cerveau. / Geometric modeling has been one of the most researched areas in the medical domain. Today, there is not a well established methodology to model the shape of an organ. There are many approaches available and each one of them have different strengths and weaknesses. Most state of the art methods to model shape use surface information only. There is an increasing need for techniques to support volumetric information. Besides shape characterization, a technique to differentiate objects by shape is needed. This requires computing statistics on shape. The current challenge of research in life sciences is to create models to represent the surface, the interior of an object, and give statistical differences based on shape. In this work, we use a technique for shape modeling that is able to model surface and internal features, and is suited to compute shape statistics. Using this technique (s-rep), a procedure to model the human cerebral cortex is proposed. This novel representation offers new possibilities to analyze cortical lesions and compute shape statistics on the cortex. The second part of this work proposes a methodology to parameterize the interior of an object. The method is flexible and can enhance the visual aspect or the description of physical properties of an object. The geometric modeling enhanced with physical parameters is used to produce simulated magnetic resonance images. This image simulation approach is validated by analyzing the behavior and performance of classic segmentation algorithms for real images.

Identiferoai:union.ndltd.org:theses.fr/2014ISAL0010
Date31 January 2014
CreatorsPrieto Bernal, Juan Carlos
ContributorsLyon, INSA, Odet, Christophe
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds