Cette thèse traite de la manipulation d'atomes de rubidium 87 piégés dans un piège optique dipolaire microscopique. Les expériences sont réalisées dans divers régimes de chargement du piège allant d'un atome unique à quelques milliers d'atomes en moyenne.Le régime à un seul atome permet de calibrer le dispositif expérimental. Nous utilisons l'atome unique comme bit quantique dont nous pouvons préparer et lire l'état avec une efficacité de 99.97% et 98.6%, respectivement. Lorsque plusieurs atomes sont chargés dans le piège microscopique, nous observons une distribution sub-Poissonienne du nombre d'atomes, liée aux collisions assistées par la présence de lumière quasi résonante. Une étude de ces collisions dans notre cas particulier (piège microscopique) révèle des taux de pertes extrêmement élevés, proches de la limite théorique de Langevin. Enfin, nous montrons que le chargement du piège microscopique avec plusieurs atomes est plus efficace lorsque nous superposons sur ce piège un deuxième piège, macroscopique, qui joue le rôle de réservoir d'atomes. Ce réservoir permet de charger le micro-piège à partir du macro-piège en l'absence de lumière quasi résonante et donc d'éviter les collisions assistées par la lumière.Le chargement du micro-piège à partir du macro-piège conduit à des conditions initiales optimales pour l'évaporation forcée dans la perspective d'atteindre la condensation de Bose-Einstein avec seulement une dizaine d'atomes. Après évaporation du gaz nous atteignons des densités dans l'espace des phases proches du régime de dégénérescence. / This thesis focuses on the manipulation of rubidium 87 atoms in a microscopic optical dipole trap. The experiments are performed in various regimes where the number of atoms in the microscopic trap ranges from exactly one atom to several thousands on average.The single atom regime allows us to calibrate the experimental setup. We use it a quantum bit, which state we can prepare and read out with efficiencies of 99.97% and 98.6%, respectively. When several atoms are loaded in the microscopic trap we observe a sub-Poissonian distribution of the number of atoms due to light-assisted collisions in the presence of near-resonant light. A study of these collisions in our particular case (microscopic trap) reveals extremely high loss rates approaching the theoretical Langevin limit. Finally, we demonstrate that the loading of the microscopic trap is more efficient when we superimpose on this trap a second macroscopic trap, which we use as an atom reservoir. This reservoir allows us to load the micro trap from the macro trap in the absence of any near-resonant light, thus avoiding light-assisted collisions.The loading of the micro trap from the macro trap leads to optimal initial conditions for forced evaporation towards Bose-Einstein condensation with about ten atoms only. After evaporation we reach phase-space densities approaching the degenerate regime.
Identifer | oai:union.ndltd.org:theses.fr/2011PA112141 |
Date | 23 September 2011 |
Creators | Fuhrmanek, Andreas |
Contributors | Paris 11, Browaeys, Antoine |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0027 seconds