In dieser Arbeit untersuchen wir mathematische Modelle für Finanzmärkte mit einem großen Händler, dessen Handelsaktivitäten transienten Einfluss auf die Preise der Anlagen haben.
Zuerst beschäftigen wir uns mit der Frage, wie die Handelserlöse des großen Händlers definiert werden sollen. Wir identifizieren die Erlöse zunächst für absolutstetige Strategien als nichtlineares Integral, in welchem sowohl der Integrand als der Integrator von der Strategie abhängen.
Unserere Hauptbeiträge sind hier die Identifizierung der Skorokhod M1 Topologie als geeigneter Topologue auf dem Raum aller Strategien sowie die stetige Erweiterung der Definition für die Handelserlöse von absolutstetigen auf cadlag Kontrollstrategien.
Weiter lösen wir ein Liquidierungsproblem in einem multiplikativen Modell mit Preiseinfluss, in dem die Liquidität stochastisch ist. Die optimale Strategie wird beschrieben durch die Lokalzeit für Reflektion einer Diffusion an einer nicht-konstanten Grenze. Um die HJB-Variationsungleichung zu lösen und Optimalität zu beweisen, wenden wir probabilistische Argumente und Methoden aus der Variationsrechnung an, darunter Laplace-Transformierte von Lokalzeiten für Reflektion an elastischen Grenzen.
In der zweiten Hälfte der Arbeit untersuchen wir die Absicherung (Hedging) für Optionen. Der minimale Superhedging-Preis ist die Viskositätslösung einer semi-linearen partiellen Differenzialgleichung, deren Nichtlinearität von dem transienten Preiseinfluss abhängt.
Schließlich erweitern wir unsere Analyse auf Hedging-Probleme in Märkten mit mehreren riskanten Anlagen. Stabilitätsargumente führen zu strukturellen Bedingungen, welche für ein arbitragefreies Modell mit wechselseitigem Preis-Impakt gelten müssen. Zudem ermöglichen es jene Bedingungen, die Erlöse für allgemeine Strategien unendlicher Variation in stetiger Weise zu definieren. Als Anwendung lösen wir das Superhedging-Problem in einem additiven Preis-Impakt-Modell mit mehreren Anlagen. / In this thesis we study mathematical models of financial markets with a large trader (price impact models) whose actions have transient impact on the risky asset prices.
At first, we study the question of how to define the large trader's proceeds from trading. To extend the proceeds functional to general controls, we ask for stability in the following sense: nearby trading activities should lead to nearby proceeds. Our main contribution in this part is to identify a suitable topology on the space of controls, namely the Skorokhod M1 topology, and to obtain the continuous extension of the proceeds functional for general cadlag controls. Secondly, we solve the optimal liquidation problem in a multiplicative price impact model where liquidity is stochastic. The optimal control is obtained as the reflection local time of a diffusion process reflected at a non-constant free boundary. To solve the HJB variational inequality and prove optimality, we need a combination of probabilistic arguments and calculus of variations methods, involving Laplace transforms of inverse local times for diffusions reflected at elastic boundaries.
In the second half of the thesis we study the hedging problem for a large trader. We solve the problem of superhedging for European contingent claims in a multiplicative impact model using techniques from the theory of stochastic target problems. The minimal superhedging price is identified as the unique viscosity solution of a semi-linear pde, whose nonlinearity is governed by the transient nature of price impact.
Finally, we extend our consideration to multi-asset models. Requiring stability leads to strong structural conditions that arbitrage-free models with cross-impact should satisfy. These conditions turn out to be crucial for identifying the proceeds functional for a general class of strategies. As an application, the problem of superhedging with cross-impact in additive price impact models is solved.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/20362 |
Date | 03 December 2018 |
Creators | Bilarev, Todor |
Contributors | Becherer, Dirk, Bank, Peter, Bouchard, Bruno |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY-NC 3.0 DE) Namensnennung - Nicht kommerziell 3.0 Deutschland, http://creativecommons.org/licenses/by-nc/3.0/de/ |
Page generated in 0.0018 seconds