Orientadora : Prof. Dr. Higidio Portillo Oquendo / Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Matemática. Defesa: Curitiba, 25/02/2016 / Inclui referências : f. 56-57 / Área de concentração: Matematica / Resumo: Neste trabalho estudamos as diferenças no comportamento de cordas elásticas cujas dissipações são de dois tipos: dissipação friccional e dissipação do tipo Kelvin-Voigt. Para isso associaremos cada problema a um semigrupo e usaremos este para discernir o comportamento das soluções. Dois desses problemas elásticos estarão munidos de uma dissipação friccional, isto é, quando as equações são da forma utt ? auxx + ut = 0. O primeiro problema tem uma dissipação globalmente distribuída e no segundo caso a dissipação é parcial e considerada em um problema de transmissão. Veremos que nesses dois casos a solução existe e o semigrupo associado a eles decai exponencialmente. O terceiro e quarto problema tem uma dissipação mais forte: dissipação do tipo Kelvin- Voigt, isto é, quando as equações são da forma utt ? auxx + uxxt = 0. Estes últimos casos apresentam grandes diferenças: quando a dissipação é globalmente distribuída o semigrupo associado não somente decai exponencialmente; mais ainda, o semigrupo é analítico. Porém, quando distribuído parcialmente num problema de transmissão, o semigrupo perde estabilidade exponencial (e portanto não é analítico). Mas provamos que este é polinomialmente estável. / Abstract: In this paper one can analyze the behavior differences of elastic strings with two kinds of damping: frictional damping and Kelvin-Voigt damping. To do that, one can associate each problem to a semigroup wich can be used discern the solutions behavior. To two of these elastic problems will be provided a frictional damping, that is, when the equations have this configuration: utt ? auxx + ut = 0. The first problem has a globally distributed damping and in the second case the dissipation is partial and considered in a transmission problem. We will realize that in these two cases exists a solution and the semigroup associated with it has exponencial decay. The third and fourth problems have a stronger dissipation: the Kelvin-Voigt damping, that is, when the equations have the following configuration: utt ? auxx + uxxt = 0. These last cases present huge differences. When the dissipation is global the semigroup associated not just decay in an exponencial order but this semigroup is analitic. However, in a parcially distributed transmission problem, the semigroup associated with the solution does not have exponencial stability (therefore is not analitic). But one can prove that it is polynomially stable
Identifer | oai:union.ndltd.org:IBICT/oai:dspace.c3sl.ufpr.br:1884/43257 |
Date | January 2016 |
Creators | Siqueira, Lucas de |
Contributors | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Matemática, Portillo Oquendo, Higídio |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 57 f. : il., application/pdf |
Source | reponame:Repositório Institucional da UFPR, instname:Universidade Federal do Paraná, instacron:UFPR |
Rights | info:eu-repo/semantics/openAccess |
Relation | Disponível em formato digital |
Page generated in 0.0021 seconds