Orientador: Sergio Antonio Tozoni / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-06T13:07:08Z (GMT). No. of bitstreams: 1
Oliveira_AndrielberdaSilva_M.pdf: 1284065 bytes, checksum: 0117263cf98921db674e49f5f57d460d (MD5)
Previous issue date: 2006 / Resumo: O objetivo da dissertação é realizar um estudo dos espaços de Besov sobre a esfera unitária d-dimensional real Sd. No primeiro capítulo são estudados espaços de interpolação utilizando dois métodos de interpolação real. Em particular são estudados os Teoremas de Equivalência e de Reiteração para os J-método e K-método. No segundo capítulo é realizado um estudo rápido sobre análise harmônica na esfera Sd, incluindo um estudo sobre harmônicos esféricos, harmônicos zonais, somas de Cesàro e sobre
um teorema de multiplicadores. O terceiro e último capítulo é o mais importante e nele são aplicados os resultados dos capítulos anteriores. São introduzidos os espaços de Besov, decompondo uma função suave definida sobre a esfera d-dimensional, em uma série de harmônicos esféricos e usando uma seqüência de polinômios zonais que podem ser vistos como uma generalização natural dos
polinômios de Vallée Poussin definidos sobre o círculo unitário. O principal resultado estudado diz que todo espaço de Besov pode ser obtido como espaço de interpolação de dois espaços de Sobolev / Abstract: The purpose of this work is to make a study about Besov¿s spaces on the unit d-dimensional real sphere Sd. In the first chapter are studied spaces of interpolation using two real interpolation methods. In particular, are studied The Equivalence Theorem and The Reiteration Theorem for the J-method and the K-method. In the second chapter it is made a short study about harmonic analysis on the sphere Sd, including a study about spherics harmonics, zonal harmonics, Cesàro sums and about a multiplier theorem.
The third and last chapter is the most important of this work. In this chapter are applied the results of the others chapters. Are introduced the Besov spaces, decomposing a smooth function defined on the d-dimensional sphere, in a series of harmonics spherics and using a sequence o zonal polynomials which can be seen as a natural generalization of the Vallée Poussin polynomials defined on the unit circle. The main result studied says that every Besov¿s space can be got as a interpolation space of two Sobolev¿s spaces / Mestrado / Mestre em Matemática
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306560 |
Date | 28 April 2006 |
Creators | Oliveira, Andrielber da Silva |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Oliveira, Andrielber da Silva, Tozoni, Sergio Antonio, Fernandez, Dicesar Lass, Silva, Eduardo Brandani da |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 68 p., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds