Yes / Background: Understanding and countering the well-established negative health consequences of spaceflight remains a primary challenge preventing safe deep space exploration. Targeted/personalized therapeutics are at the forefront of space medicine strategies, and cross-species molecular signatures now define the 'typical' spaceflight response. However, a lack of direct genotype-phenotype associations currently limits the robustness and, therefore, the therapeutic utility of putative mechanisms underpinning pathological changes in flight. Methods: We employed the worm Caenorhabditis elegans as a validated model of space biology, combined with 'NemaFlex-S' microfluidic devices for assessing animal strength production as one of the most reproducible physiological responses to spaceflight. Wild-type and dys-1 (BZ33) strains (a Duchenne muscular dystrophy (DMD) model for comparing predisposed muscle weak animals) were cultured on the International Space Station in chemically defined media before loading second-generation gravid adults into NemaFlex-S devices to assess individual animal strength. These same cultures were then frozen on orbit before returning to Earth for next-generation sequencing transcriptomic analysis. Results: Neuromuscular strength was lower in flight versus ground controls (16.6% decline, p
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/19712 |
Date | 22 November 2023 |
Creators | Soni, P., Edwards, H., Anupom, T., Rahman, M., Lesanpezeshki, L., Blawzdziewicz, J., Cope, H., Gharahdaghi, N., Scott, D., Toh, L.S., Williams, P.M., Etheridge, T., Szewczyk, N., Willis, Craig R.G., Vanapalli, S.A. |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, Published version |
Rights | (c) 2023 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/), CC-BY |
Page generated in 0.0025 seconds