• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The feasibility of the international space station : economic and political problems faced by the international partners

Hoffman, Jennifer 01 January 1999 (has links)
This paper focuses on issues faced by the individual partners involved in the International Space Station. Specifically addressed are the economic troubles in Russia and Japan, political problems in the United States and Canada, and the issue of cooperation in the European Union. Using Linkage, Post-Internationalist, and Practice Theories to demonstrate how this unique project will proceed, this thesis suggests several strategies to help ensure the proposition's success.
2

Making All The Data Available Some Of The Time In Very Large Telemetry Volume Space Applications

Cook, David B. 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / What do you do when your downlink telemetry needs outstrip your downlink bandwidth capability? The telemetry needed to support construction and operation of the largest, most complex engineering project ever undertaken, the International Space Station (ISS), already requires utilization of the full capacity of the downlink S-band capacity, yet there are additional systems and capabilities still to be added by NASA and the International Partners. The ISS Command and Telemetry Team has developed a method of swapping packets of telemetry that are intended for special operations, while simultaneously sending essential systems telemetry and less critical telemetry that is needed on a continuous basis. To support this attempt to “make available all of the data at least some of the time” the team developed concepts for grouping telemetry into families that would always be selected as a group and then created a set of metadata associated with these groups. This metadata is pre-defined to support automated selection and scrubbing of telemetry to correspond to major upgrades in the command and control software for the ISS. The new process will at least double the effective S-band downlink bandwidth. It will also provide automated selection, scrubbing, reporting and verification of telemetry selections.
3

Microbiology of aquatic environments : characterizations of the microbiotas of municipal water supplies, the International Space Station Internal Active Thermal Control System's heat transport fluid, and US space shuttle drinking water /

Benardini, James Nicholas January 1900 (has links)
Thesis (Ph. D., Microbiology, Molecular Biology and Biochemistry)--University of Idaho, March 2007. / Major professor: Ronald L. Crawford. Includes bibliographical references. Also available online (PDF file) by subscription or by purchasing the individual file.
4

Study on dynamics in the mesosphere, thermosphere and ionosphere with optical observations from the International Space Station / 国際宇宙ステーションからの光学観測を用いた中間圏、熱圏、電離圏のダイナミクスの研究

Hozumi, Yuta 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20186号 / 理博第4271号 / 新制||理||1614(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 齊藤 昭則, 教授 田口 聡, 教授 塩谷 雅人 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
5

Development Of A Knowledge Management Model In Large-scale International Space Science Projects

Nunez, Jose Luis 01 January 2005 (has links)
Large-scale international science projects (LISPs) are those projects where two or more countries formally agree to cooperate toward the achievement of a scientific, research and development, or engineering goal. In general, only projects exceeding $1 billion U.S. are considered LISPs, so sheer size commands attention, and because they are so costly and visible, failure can lead to significant scientific, financial and political consequences. This researched focused on how 7 different critical success factors impacted the level of technical interface knowledge shared among international partners involved in a large-scale international space science project (LISSP) – the International Space Station (ISS), which is currently under assembly and testing at the Kennedy Space Center, Florida. The research methodology employed documentation review, individual interviews and surveys of experienced engineers and managers from three different countries associated with the ISS. The research methodology was applied to three different cases (retrospectively) involving the processing of flight hardware from the three different international partners. The analysis showed that only 5 out of the 7-factor model played a significant role in the level of knowledge sharing between partners. The developed model provides future international partnerships with critical success factors that they can apply to their specific project / mission teams in order to improve the level of knowledge shared between them.
6

Developing Communication and Data Systems for Space Station Facility Class Payloads

Hazra, Tushar K., Sun, Charles, Mian, Arshad M., Picinich, Louis M. 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / The driving force in modern space mission control has been directed towards developing cost effective and reliable communication and data systems. The objective is to maintain and ensure error-free payload commanding and data acquisition as well as efficient processing of the payload data for concurrent, real time and future use. While Mainframe computing still comprises a majority of commercially available communication and data systems, a significant diversion can be noticed towards utilizing a distributed network of workstations and commercially available software and hardware. This motivation reflects advances in modem computer technology and the trend in space mission control today and in the future. The development of communication and data involves the implementation of distributed and parallel processing concepts in a network of highly powerful client server environments. This paper addresses major issues related to developing and integrating communication and data system and the significance for future developments.
7

PREPARING A COTS GROUND TELEMETRY RECEIVER FOR USE IN THE INTERNATIONAL SPACE STATION

Champion, James 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Within the industry, telemetry receivers are used in ground-based telemetry receiving stations to receive telemetry data from air or space-based sources. Equipment for the typical telemetry application is widely available. But when requirements create the need for a space-based telemetry receiver to uplink data from the ground, what are the choices for equipment? In such situations, adapting COTS equipment may present the only solution to meet delivery and budgetary constraints. The first part of this paper provides technical and contractual points a COTS supplier needs to consider when bidding on a COTS contract. The second part of this paper covers a project concerned with modification of a general-purpose ground telemetry receiver for use on the International Space Station. The information within the paper is useful to other engineers and companies considering contracts to modify COTS equipment for use on Shuttle or other space-based projects.
8

Payload Data Analyzer and Payload Data Generator System for Space Station Integration and Test

Werner, Jeffrey M. 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / To support the processing of International Space Station (ISS) Payloads, the Kennedy Space Center (KSC) had the need to develop specialized test and validation equipment to quickly identify interface problems between the payload or experiment under test and the communication and telemetry downlink systems. To meet this need, the Payload Data Analyzer (PDA) System was developed by the Data Systems Technology Division (DSTD) of NASA’s Goddard Space Flight Center (GSFC) to provide a suite of troubleshooting tools and data snapshot features allowing for diagnosis and validation of payload interfaces. The PDA System, in conjunction with the Payload Data Generator (PDG) System, allow for a full set of programmable payload validation tools which can quickly be deployed to solve crucial interface problems. This paper describes the architecture and tools built in the PDA which help facilitate Space Station Payload Processing.
9

Microbial responses to extreme radiation environments

Wadsworth, Jennifer Louise January 2018 (has links)
Microorganisms are known to tolerate a variety of extreme environments, such as high and low pH, desiccation and a wide range of temperatures that would prove uninhabitable for most eukaryotic cells. However, extreme radiation exposure is a ubiquitous hazard to pro- and eukaryotic viability. Ionising and non-ionising radiation, and their associated high energies, cause damage to a cell in the form of DNA double-strand breaks, membrane deterioration, and lethal mutations. Radiation also induces secondary effects such as the production of reactive oxygen species, which attack and degrade organic compounds. It is therefore not surprising that radiation is considered by the scientific community to be one of the main influencing factors when regarding habitability on the early Earth, as well as other planets, such as present-day Mars. This thesis explores the response of select microbes that have been exposed to extreme radiation environments, i.e. both high and ultra-low radiation. Understanding how radiation affects the geochemical environment is key to the assessment of its potential to support life and to harbour molecules associated with life. The effect of radiation-induced photochemistry on the early terrestrial and present-day Martian surface is explored in conjunction with Fenton chemistry. Iron oxides are abundant on both Earth and Mars and act as catalysts in Photo-Fenton reactions, enabling the production of free radicals. The resulting consequences for habitability are shown to be antagonistic, with iron oxide enabling both the protection or destruction of cells, depending on the local geochemistry. In addition, the photo-reactivity of perchlorate is investigated. The UV-induced activation of the strong oxidant, and recently confirmed Martian surface constituent, is demonstrated, revealing its severe bacteriocidal effect on microbes. It is also shown to significantly reduce microbial viability when combined with further Martian soil constituents and components required for Photo-Fenton chemistry. In order to accurately analyse the effects of low earth orbit radiation on prokaryotic life, cyanobacterial samples were attached to the outside of the International Space Station as part of the EXPOSE-R2 mission for 1.5 years. The samples were subjected to various conditions, including exposure to a minimally filtered space radiation environment and simulated Mars conditions. The experiment is designed to test the protection that biogenic and non-biogenic substances may provide to cells. The results in this work present the post-flight analysis of the samples and demonstrate the ability of these substances to maintain cyanobacteria viability. They also show that the cyanobacterial cells themselves can effectively act as a shield for a secondary, co-cultured bacteria species. On the other end of the radiation dose scale, this work addresses the gaps in knowledge with regard to the little-understood effects of low, sub-background radiation on prokaryotes. Using the Boulby Underground Lab in the functioning Boulby Mine, Cleveland UK, microbes are cultivated under regulated, extremely low radiation environments to test multiple dose-response models. The results show no change in cell's growth rates or gradients in low radiation exposure when compared to surface-dose controls. They also fail to exhibit any enhanced susceptibility to stress factors, such as UV irradiation, as suggested by previous work in the field. These experiments mark the first extensive and tightly controlled research into microbial responses in the near-absence of radiation. This work illustrates the importance of understanding both primary and secondary effects of radiation on microbes and begins to bridge the knowledge gap from both ends of the dose axis. These approaches show the far-reaching influence radiation has on astrobiologically relevant topics, such as habitat geochemistry and life detection, and demonstrate the capacity of life to survive in extreme radiation environments.
10

Trade Study of Decomissioning Strategies for the International Space Station

Herbort, Eric 06 September 2012 (has links)
This thesis evaluates decommissioning strategies for the International Space Station ISS. A permanent solution is attempted by employing energy efficient invariant manifolds that arise in the circular restricted three body problem CRTBP to transport the ISS from its low Earth orbit LEO to a lunar orbit. Although the invariant manifolds provide efficient transport, getting the the ISS onto the manifolds proves quite expensive, and the trajectories take too long to complete. Therefore a more practical, although temporary, solution consisting of an optimal re-boost maneuver with the European Space Agency's automated transfer vehicle ATV is proposed. The optimal re-boost trajectory is found using control parameterization and the sequential quadratic programming SQP algorithm. The model used for optimization takes into account the affects of atmospheric drag and gravity perturbations. The optimal re-boost maneuver produces a satellite lifetime of approximately ninety-five years using a two ATV strategy.

Page generated in 0.1523 seconds