Return to search

Détection de molécules par lidar agile multi-longueurs d'onde dans l'infrarouge moyen

Cette thèse présente la preuve de concept d’un nouveau système de télédétection multi-gaz utilisant la spectroscopie active d'absorption optique différentielle (active Differential Optical Absorption Spectroscopy ou active DOAS). Le système opère dans l’infrarouge proche et moyen. Celui-ci est conçu pour mesurer des gaz à une distance d’une centaine de mètres avec l’utilisation de cibles non coopératives, telles que les éléments de la topographie du terrain. Le système inclut un générateur paramétrique (Optical Parametric Generator ou OPG) permettant la génération d’impulsions ayant un spectre large (10 à > 100 nm) et dont la longueur d’onde centrale est accordable entre 1.5 et 3.8 µm. Un télescope couplé à un spectrographe et à une caméra MCT-APD maison permettent de détecter le spectre de retour de chaque impulsion. Les expériences montrent la détection simultanée, dans l’air et dans une cellule, de H2O et CO2 à 2 µm et de H2O et CH4 à 3.3 µm. Les limites de détection pour notre expérience sont respectivement de 158 et 1 ppm·m pour le gaz carbonique et le méthane. Un algorithme original permet d’extraire les concentrations de gaz à partir d’un spectre de transmission présentant de signatures fortes d’absorption. Le développement d’un OPG conçu spécialement pour le système est détaillé. Son utilisation offre des avantages intéressants pour la mesure de gaz à distance. Les propriétés de l’OPG sont étudiées numériquement et expérimentalement afin d’optimiser son utilisation pour la mesure de gaz. Nous discutons des compromis à faire sur les paramètres de la pompe, du cristal et des sources d’injection (seed). L’objectif est d’optimiser la densité spectrale et la divergence tout en augmentant l’énergie de sortie. Un laser d’injection large bande est construit et il permet d’optimiser la stabilité de l’OPG d’une impulsion à l’autre, la densité d’énergie et la divergence. Un modèle numérique permet de simuler correctement le niveau de puissance de l’OPG, d’expliquer les mécanismes de saturation de l’amplificateur et de proposer des moyens pour améliorer la stabilité d’une impulsion à l’autre. / This thesis presents the proof-of-concept of a novel remote sensing system designed for the detection of molecular species, such as gas pollutants, via active Differential Optical Absorption Spectroscopy (DOAS) in the short and mid wavelength infrared (SWIR/MWIR). The system is designed to be used in applications where gases need to be detected at a distance of about one hundred meters with the use of non-cooperative targets such as topographical features. The system includes an Optical Parametric Generator (OPG) generating broad linewidth (10 to > 100 nm) pulses tunable between 1.5 and 3.8 µm. A telescope coupled to a grating spectrograph and an in-house gated MCT-APD measures the whole return spectrum of each pulse. Experiments show simultaneous detection in indoor atmospheric air and inside a cell of H2O and CO2 at 2 µm and H2O and CH4 at 3.3 µm. In the context of our experiment, the detection limits for CO2 and CH4 are 158 and 1 ppm·m, respectively. A new algorithm is also presented enabling the determination of concentrations when spectra include strong absorption features. The development of a dedicated Optical Parametric Generator (OPG) is presented in detail. Its use in remote sensing of gaseous pollutants offers some promising advantages. The OPG properties are studied numerically and experimentally in order to optimize its use for the application. We discuss trade-offs to be made on the properties of the pump, crystal and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse to pulse stability and optimize the pulse spectral density and divergence. A numerical model simulating the OPG process is proposed and includes the multiple wavelength nature of the beams. It shows excellent agreement with experimental output power. The model also explains the mechanisms of gain saturation in OPGs and helps finding means of enhancing the pulse to pulse stability.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/26425
Date23 April 2018
CreatorsLambert Girard, Simon
ContributorsPiché, Michel, Babin, François
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxiv, 119 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0018 seconds