Return to search

Train Localization and Speed Estimation Using On-Board Inertial and Magnetic Sensors

Positioning systems for trains are traditionally based on track-side infrastructure, implying costs for both installation and maintenance. A reliable on-board system would therefore be attractive. Sufficient reliability for on-board systems is likely going to require a multi-sensor solution. This thesis investigates how measurements from bogie-mounted inertial and magnetic sensors can contribute to such a system. The first part introduces and compares two different methods for estimating the speed. The first one estimates the fundamental frequency of the variations in the magnetic field, and the second one analyses the mechanical vibrations using the accelerometer and gyro, where one mode is due to the wheel irregularities. The second part introduces and evaluates a method for train localization using magnetic signatures. The method is evaluated both as a solution for localization along a given track and at switchways. Overall, the results in both parts show that bogie-mounted inertial and magnetic sensors provide accurate estimates of both speed (within 0.5 m/s typically) and location (3-5 m accuracy typically).

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-121620
Date January 2015
CreatorsHedberg, Erik, Hammar, Mikael
PublisherLinköpings universitet, Reglerteknik, Linköpings universitet, Tekniska fakulteten, Linköpings universitet, Reglerteknik, Linköpings universitet, Tekniska fakulteten
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds