<p> </p>
<p> </p>
<p>An approach to modify surface flashover of insulators in vacuum by limiting duration of its high-current stage responsible for the damaging effects of a classic flashover was developed. The flashover assembly was made by TorrSeal-gluing copper electrodes (10 x 10 x 0.5 mm) to both side of an alumina ceramic sheet (0.635 mm thick). The modified flashover, referred to as low energy surface flashover (LESF), was achieved by utilization of a high voltage (HV) nanosecond pulser or addition of a resistor in series with the LESF assembly when HV DC was utilized. The duration of LESF was visualized by ICCD fast photography to be 100 – 200 ns accompanying electrical characteristics measurements, which gave insight of a way to control the flashover duration by inserting additional capacitor in parallel with the LESF assembly to increase the stored energy prior to breakdown. The LESF assembly was tested for > 1.5 million consecutive pulses and remained operational, while operation in high energy regime with parallel capacitor (4nF) lead to significant damage after 200 pulses.</p>
<p>The igniting capabilities of LESF assembly was demonstrated via successful triggering of vacuum arc and a prototype pulsed plasma accelerator. The plasma plume propagation speed and angular distribution was measured via Langmuir probes. Efforts were made for temporally resolved spectroscopy measurements. </p>
<p>The LESF assembly was improved by replacing TorrSeal-gluing with direct bonding of copper to alumina ceramic and changing the configuration from parallel plate to coaxial. The improved assembly was demonstrated to be operational throughout and after an extended test of 10 million pulses. A higher resolution ICCD photography revealed finer LESF discharge features including initial bright line across the insulator developing into a double-jet plasma plume propagating at around 10<sup>5</sup>m/s and later-on point-like attachment of the discharge column to the electrodes. The composition of the plasma and erosion pattern on the LESF assembly was studied via SEM/EDX analysis, which supported the predominant ceramic erosion over copper electrodes erosion.</p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/21585969 |
Date | 17 May 2024 |
Creators | Yunping Zhang (13834921) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/LOW_ENERGY_SURFACE_FLASHOVER_IGNITOR_FOR_ELECTRIC_PROPULSION_SYSTEMS/21585969 |
Page generated in 0.0044 seconds