Return to search

Early Wing Structural Design for Stiffness and Frequency Response

abstract: This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass such as fuel loading and control surfaces. To accomplish this, an improvement is made to existing design tools utilizing rule based automated design to generate wing torque box geometry from a specific wing outer mold-line. Simple analysis on deflection and inferred stiffness shows how early conceptual design choices can strongly impact the stiffness of the structure. The impacts of design choices and how the buckling constraints drive structural weight in particular examples are discussed. The model is then carried further to include a finite element model (FEM) to analyze resulting mode shapes and frequencies for use in aeroelastic analysis. The natural frequencies of several selected wing torque boxes across a range of loading cases are compared. / Dissertation/Thesis / Masters Thesis Aerospace Engineering 2018

Identiferoai:union.ndltd.org:asu.edu/item:51702
Date January 2018
ContributorsMiskin, Daniel L (Author), Takahashi, Timothy T (Advisor), Mignolet, Marc (Committee member), Murthy, Raghavendra (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format58 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0013 seconds