Return to search

Molecular Mechanisms of Resistance and Structure-Based Drug Design in Homodimeric Viral Proteases

Drug resistance is a global health threat costing society billions of dollars and impacting millions of lives each year. Current drug design strategies are inadequate because they focus on disrupting target activity and not restricting the evolutionary pathways to resistance. Improved strategies would exploit the structural and dynamic changes in the enzyme–inhibitor system integrating data from many inhibitors and variants.
Using HIV-1 protease as a model system, I aimed to elucidate the underlying resistance mechanisms, characterize conserved protease-inhibitor interactions, and generate more robust inhibitors by applying these insights. For primary mechanisms of resistance, comparing interactions at the protease–inhibitor interface showed how specific modifications affected potency. For mutations distal to the active site, molecular dynamics simulations were necessary to elucidate how changes propagated to reduce inhibitor binding. These insights informed inhibitor design to improve potency against highly resistant variants by optimizing hydrogen bonding. A series of hybrid inhibitors was also designed that showed excellent potency by combining key moieties of multiple FDA-approved inhibitors. I characterized the structural basis for alterations in binding affinity in HIV-1 protease both from mutations and inhibitors.
I applied these strategies to HTLV-1 protease, a potential drug target. I identified the HIV-1 inhibitor darunavir as a viable scaffold and evaluated analogues, leading to a low-nanomolar compound with potential for optimization. Hopefully, insights from this thesis will lead to the development of potent HTLV-1 protease inhibitors. More broadly, these inhibitor design strategies are applicable to other rapidly evolving targets, thereby reducing drug resistance rates in the future.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-2083
Date17 April 2020
CreatorsLockbaum, Gordon J.
PublishereScholarship@UMMS
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGSBS Dissertations and Theses
RightsCopyright is held by the author, with all rights reserved., select

Page generated in 0.0025 seconds