Visual attention is an important cognitive concept for the daily life of humans, but still not fully understood. Due to this, it is also rarely utilized in computer vision systems. However, understanding visual attention is challenging as it has many and seemingly-different aspects, both at neuronal and behavioral level. Thus, it is very hard to give a uniform explanation of visual attention that can account for all aspects. To tackle this problem, this thesis has the goal to identify a common set of neuronal mechanisms, which underlie both neuronal and behavioral aspects. The mechanisms are simulated by neuro-computational models, thus, resulting in a single modeling approach to explain a wide range of phenomena at once. In the thesis, the chosen aspects are multiple neurophysiological effects, real-world object localization, and a visual masking paradigm (OSM). In each of the considered fields, the work also advances the current state-of-the-art to better understand this aspect of attention itself. The three chosen aspects highlight that the approach can account for crucial neurophysiological, functional, and behavioral properties, thus the mechanisms might constitute the general neuronal substrate of visual attention in the cortex. As outlook, our work provides for computer vision a deeper understanding and a concrete prototype of attention to incorporate this crucial aspect of human perception in future systems.:1. General introduction
2. The state-of-the-art in modeling visual attention
3. Microcircuit model of attention
4. Object localization with a model of visual attention
5. Object substitution masking
6. General conclusion / Visuelle Aufmerksamkeit ist ein wichtiges kognitives Konzept für das tägliche Leben des Menschen. Es ist aber immer noch nicht komplett verstanden, so dass es ein langjähriges Ziel der Neurowissenschaften ist, das Phänomen grundlegend zu durchdringen. Gleichzeitig wird es aufgrund des mangelnden Verständnisses nur selten in maschinellen Sehsystemen in der Informatik eingesetzt. Das Verständnis von visueller Aufmerksamkeit ist jedoch eine komplexe Herausforderung, da Aufmerksamkeit äußerst vielfältige und scheinbar unterschiedliche Aspekte besitzt. Sie verändert multipel sowohl die neuronalen Feuerraten als auch das menschliche Verhalten. Daher ist es sehr schwierig, eine einheitliche Erklärung von visueller Aufmerksamkeit zu finden, welche für alle Aspekte gleichermaßen gilt. Um dieses Problem anzugehen, hat diese Arbeit das Ziel, einen gemeinsamen Satz neuronaler Mechanismen zu identifizieren, welche sowohl den neuronalen als auch den verhaltenstechnischen Aspekten zugrunde liegen. Die Mechanismen werden in neuro-computationalen Modellen simuliert, wodurch ein einzelnes Modellierungsframework entsteht, welches zum ersten Mal viele und verschiedenste Phänomene von visueller Aufmerksamkeit auf einmal erklären kann. Als Aspekte wurden in dieser Dissertation multiple neurophysiologische Effekte, Realwelt Objektlokalisation und ein visuelles Maskierungsparadigma (OSM) gewählt. In jedem dieser betrachteten Felder wird gleichzeitig der State-of-the-Art verbessert, um auch diesen Teilbereich von Aufmerksamkeit selbst besser zu verstehen. Die drei gewählten Gebiete zeigen, dass der Ansatz grundlegende neurophysiologische, funktionale und verhaltensbezogene Eigenschaften von visueller Aufmerksamkeit erklären kann. Da die gefundenen Mechanismen somit ausreichend sind, das Phänomen so umfassend zu erklären, könnten die Mechanismen vielleicht sogar das essentielle neuronale Substrat von visueller Aufmerksamkeit im Cortex darstellen. Für die Informatik stellt die Arbeit damit ein tiefergehendes Verständnis von visueller Aufmerksamkeit dar. Darüber hinaus liefert das Framework mit seinen neuronalen Mechanismen sogar eine Referenzimplementierung um Aufmerksamkeit in zukünftige Systeme integrieren zu können. Aufmerksamkeit könnte laut der vorliegenden Forschung sehr nützlich für diese sein, da es im Gehirn eine Aufgabenspezifische Optimierung des visuellen Systems bereitstellt. Dieser Aspekt menschlicher Wahrnehmung fehlt meist in den aktuellen, starken Computervisionssystemen, so dass eine Integration in aktuelle Systeme deren Leistung sprunghaft erhöhen und eine neue Klasse definieren dürfte.:1. General introduction
2. The state-of-the-art in modeling visual attention
3. Microcircuit model of attention
4. Object localization with a model of visual attention
5. Object substitution masking
6. General conclusion
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35655 |
Date | 09 December 2020 |
Creators | Beuth, Frederik |
Contributors | Hamker, Fred H., Hamker, Fred H., Neumann, Heiko, Einhäuser-Treyer, Wolfgang, Technische Universität Chemnitz |
Publisher | Universitätsverlag Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | German |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds