Cette thèse se propose d’obtenir des résultats statistiques sur les zéros non-triviaux de fonctions L. Dans le cas des fonctions L de formes modulaires, on prouve qu’une proportion positive explicite de zéros non-triviaux se situe sur la droite critique. Afin d’arriver à ce résultat, il nous faut préalablement étendre un théorème sur les problèmes de convolution avec décalage additif en moyenne de manière à déterminer le comportement asymptotique du second moment intégral ramolli d’une fonction L de forme modulaire au voisinage de la droite critique. Une autre partie de cette thèse, indépendante de la précédente, est consacrée à l'étude du plus petit zéro non-trivial d’une famille de fonctions L. Ces résultats sont en particulier appliqués aux fonctions L de puissance symétrique. / The purpose of this dissertation is to get some statistical results related to nontrivial zeros of L-functions. In the modular case, we prove and determine an explicit positive proportion of non-trivial zeros lying on the critical line. In order to obtain this result, we need to extend a theorem on shifted convolution sums on average to be able to determine the asymptotic behaviour of the mollified second integral moment of a modular L-function close to the critical line. Independently of these results, we study the smallest non-trivial zero in a family of L-functions. These results are applied to symmetric power L-functions.
Identifer | oai:union.ndltd.org:theses.fr/2013CLF22408 |
Date | 09 December 2013 |
Creators | Bernard, Damien |
Contributors | Clermont-Ferrand 2, Royer, Emmanuel, Ricotta, Guillaume |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds