Return to search

WIRELESS SENSOR NETWORK PLATFORM FOR HARSH INDUSTRIAL ENVIRONMENTS

Wireless Sensor Networks (WSNs) are popular for their wide scope of application domains ranging from agricultural, medical, defense, industrial, social, mining, etc. Many of these applications are in outdoor type environments that are unregulated and unpredictable, thus, potentially hostile or physically harsh for sensors. The popularity of WSNs stems from their fundamental concept of being low cost and ultra-low power wireless devices that can monitor and report sensor readings with little user intervention, which has led to greater demand for WSN deployment in harsh industrial environments. We argue that there are a new set of architectural challenges and requirements imposed on the hardware, software, and network architecture of a wireless sensor platform to operate effectively under harsh industrial environments, which are not met by currently available WSN platforms. We propose a new sensor platform, called Sprouts. Sprouts is a readily deployable, physically rugged, volumetrically miniature, modular, network standard, plug-and-play (PnP), and easy to use sensor platform that will assist university researchers, developers, and industrial companies to evaluate WSN applications in the field, and potentially bring about new application domains that were previously difficult to accomplish using off the shelf WSN development platforms. Therefore, we addresses the inherent requirements and challenges across the hardware, software, and network layer required for designing and implementing Sprouts sensor platform for harsh industrial environments. We fully implement the hardware, network, and software architecture for the Sprouts platform and verify that they meet the requirements for harsh environments. We deploy the Sprouts platform customized with our PnP ultrasound sensor module in an industrial application to monitor the health conditions of Syncrude's vibration screens operating under extreme harsh conditions. Sprouts has been showcased in OCE Discovery 2011, and has been proven to be extremely valuable for industrial mining companies such as Syncrude. / Thesis (Ph.D, Computing) -- Queen's University, 2013-09-28 16:14:48.223

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/8342
Date28 September 2013
CreatorsEl Kouche, AHMAD
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.002 seconds